a2 United States Patent

Welton et al.

US009195699B2

US 9,195,699 B2
Nov. 24, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

METHOD AND APPARATUS FOR STORAGE
AND RETRIEVAL OF INFORMATION IN
COMPRESSED CUBES

Inventors: Caleb Welton, Malden, MA (US);
Ekrem Soylemez, Arlington, MA (US);
Albert A. Hopeman, Arlington, MA

(US)

Assignee: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1758 days.

Appl. No.: 10/913,143

Filed: Aug. 6, 2004
Prior Publication Data
US 2005/0065910 A1 Mar. 24, 2005

Related U.S. Application Data

Provisional application No. 60/493,335, filed on Aug.
8, 2003.

Int. Cl1.

GO6F 17/30 (2006.01)

U.S. CL

CPC GO6F 17/30333 (2013.01); GOG6F 17/30489

(2013.01)

(58) Field of Classification Search
CPC ..ccovvvrvvnennne GOG6F 17/30333; GOGF 17/30489
USPC ittt 707/100, 711
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,334,125 B1* 12/2001 Johnsonetal. 707/3
2004/0193388 Al* 9/2004 Outhred et al. 703/1

* cited by examiner

Primary Examiner — Syling Yen

Assistant Examiner — Johnese Johnson

(74) Attorney, Agent, or Firm — Hickman Palermo Becker
Bingham LLP; Marcel K. Bingham

(57) ABSTRACT

A method and data structure is described that builds summary
information using processor time that is usually proportional
to the size of input data and a depth of hierarchies for a
plurality of attributes. The output of computation is stored in
a smaller area by eliminating redundant storage and compu-
tation. An index is generated which includes tuples or rows
that include lower bound values for each of the attributes,
values of children of the lower bound values based on the
hierarchies of the attributes, and coverage class indicators of
the coverage classes of the children.

58 Claims, 55 Drawing Sheets

Values for Generating an Index /<
702

Generate Parent Entry in Index Including Bounds

704

y

Determine Child Position Associated With
One of Bounds in a Hierarchy

706

A

Generate Child Entry Including Child Bound

| T — 708

Store Child Position in Association With
Parent Entry and Child Entry 710

U.S. Patent Nov. 24, 2015 Sheet 1 of 55 US 9,195,699 B2

FIG. 1

US 9,195,699 B2

Sheet 2 of 55

Nov. 24, 2015

U.S. Patent

L4

_ 910v1g2ey —

9LovIgLY

c

— 910z18¢ELY _

910ciatev

910¢1givy

21081811y

Zi0g1aiey _

_ L1OE1BLEY _

21081810V

00¢

002

€ "Old

¢ 'Old

<910 v1g ccv> v
<910 2la€lv> ¢

</10 €19 LIV> 1

US 9,195,699 B2

Sheet 3 of 55

Nov. 24, 2015

U.S. Patent

00 ~o™a

¥ "Old

L:l%er48: 143
9LoLzge LY

910vigeey

91o1eae LY

910¢caeey

9LoLeacy

91021g1EvY
9131ea1ey

9101E8IEY

910Z18 1Y

91L01281vY

910% 181V

91022a1Lvy

2101e81LYY

[Ate] %198 4

LIDLEBILY

L1o1e81ey
L101e8ley

A% ¥.: 157
4101e81Ev

LID128h Y

PARe]d:184 4

21081911y

21081812V

LIOE1E1EY

L108181vv

US 9,195,699 B2

Sheet 4 of 55

Nov. 24, 2015

U.S. Patent

005 ~/™a z

v

_ 9LovigzevY F

S "Old

910218E1Y
91012a€LY

LLogiaLLy

4101281y

P2OCLaLIY

— €20ieaeLY _

_ vzoi2aLly

£20218ELY

Ledleaely
9LO1EgELY

1eogLgy

Leoieaiy
[A%e135:183

leoeigeLy

_ £2origeey _ — 910zedzey /

LE01LE82eY

91OPIBIYY

£2origIwy
1EOVIBIPY

9102c8I v

€20zes Iy

15e144-18 44

_ £TOIETELY _

— va—mﬂ—-(_

LEDIETELY

910zZia1Ev

aLoLzaIEY

€20128LEY

€2lciaiey
[wosiane | i

[R3a743:13% 4

ggolealevy

910zIaivv

taerdi=184

ElRelTat 1844 _ _ [J>er42:184 _

€eolzalyy

9101881V

€CoLEgIvyY

iedlcaley

m

LE0LEaIEY

LeoLzalvy

yeogialey

reazigLey

(330748 1¥4

reoLegiey

Leoealey

[1xe148:1%2

L10ie81IY

L10E181EV

v2oleglev
LEDELBILEY
L101e91EY

_ PEOLEBIEY _ & LIDELBIPY

e 33:184

101281y 180E181PY

£

yeoLzaIvy

21018814

US 9,195,699 B2

Sheet 5 of 55

Nov. 24, 2015

U.S. Patent

009 ~~™a

v

910vigeav

_ Eeorideey _ _ 910228y /

£20ZLIPELY

1EDZIgELY

810ci8eELY

geoeeaeey

1) 43:-I444

®

9i1oridiry
£20oP181PY
910Zeg ity
LEQPLGLRY
£eleeaIwy
9LO1EBLIV
[§=e724: 1844

®

Poraerds: 18504

1eoZ1a1EY

Jz1giev

9 "OId

210128ELY

LIDEIDLY

101291

2101891y

_\ czoLzEELY _ _ vEolzaLly
LEDLZEELY ‘eQLzaLY
9101E8ELY
_ nwo—nmmi_ ﬁ .,Noam,_(_

21081812V

LEDLETELY

1eo1€aLy

¥2az1812v

2101g8a1EY

O

[§>er4%:1¥44

r2oLeaLey

Leoieatey

LI01E812¢

1081818V

LI01291eY _

E2o12818Y

Elxer43: 1844

810tE9LEY

LeicaLey
€2oiealey

£20zLgivy

Elsel¥4: 1844

_ ~ 1ED2181Y _

Praelin:18 44

geoLealry

+2oI2ZaIEY
LID1881EY

yZOEIBLIV

LEDELBLLY

veoeLaiey
LeDELBIZY

Y2oIEAIEY _ h L10E181Y

2101281y

v2oiZaIy

L101e81y

LEOLERLIY

[

PZOLERIYY

v2oe1aLeY

US 9,195,699 B2

Sheet 6 of 55

Nov. 24, 2015

U.S. Patent

YA E

OLL A3 piiyo pue Aju3 juaied
UM UONEIDOSSY Ul UOWISO PIIYD 81015

802
~ 1 punog ppyo Buipnjouy Aju3 pyD ereseusn

A

904 —~_ AysielaiH e Ul spunog jo auQ

UHM PaJeIooSSY UoINSod plIyD sulwieleq

144
] spunog Buipnjouj xapu] ui Aijug jusied ajeiausn)

A

[AVA
xapu| ue Buielausr) Joj senjep

US 9,195,699 B2

Sheet 7 of 55

Nov. 24, 2015

U.S. Patent

8 "OId

8poN 1sii4 Aq pereoipuj

8PON pu028s Jo punog J

aMOT Yim way| aredwon)

908

A

O

BPON 1Si14 JO punog 19Mo 0} Wa}| Wol4 Yied
ul SI punog J8Mo JO PIIYD JBYIdUM aulwiseq

¥08

4

A

SPON 1sild4 jo pu

nog Jemo uey}

AyoiessiH ul 1amoT S anjep Wal| Jayisyp aulwieeq

4

c08

BPON 15114 JO punog Jamo Yyum way| aredwo)

US 9,195,699 B2

Sheet 8 of 55

Nov. 24, 2015

U.S. Patent

806

6 ‘Old

Xopuj] Jo 8pON yoe3 u
Aelry uo paseg 10NpoId SSOID) 8jeIauUdL)

906

¥06

c06

BPON Juaied 01 8PON pPIIyD woli4 AyosesalH dn
Buiysng Ag psuiwisieq Aeuly ul sanje apnjou|

A

8pON 10} a1nquNy yoe3 uo Aelry azijeniu|

xapu| Buisn eleq jo Apog esianes|

U.S. Patent

Roll Up:

Nov. 24, 2015

\[i

Sheet 9 of 55

Drill Down:;

US 9,195,699 B2

Y~ 1000

FIG. 10

US 9,195,699 B2

Sheet 10 of 55

Nov. 24, 2015

U.S. Patent

00l ~/™a

L1 "Old

910 vid ecv ¥

9102149 ¢€lv ¢

210 ¢€ig LIV L

1A

cOL!

US 9,195,699 B2

Sheet 11 of 55

Nov. 24, 2015

U.S. Patent

€L 'Old
00EF o~
eV 14 910 vid L ¥V
€LV ¢ 910 cid IEV
LV . A% eld ¥4

SN[EA 90JN0S # SSe|n) D uolsuawig g uoisuawig ¥ uoisuswiq

¢l 'Old
002k ~~a
- 1% 910 vid ccV
- ¢ 910 ctd eIV
- I 1O £id LIV

anje/) 90IN0S # Sse|) D uoistuawilg g uoisuawig Y uoisuawiq

US 9,195,699 B2

Sheet 12 of 55

Nov. 24, 2015

U.S. Patent

Sl "OId
0061 ~_"
[idey] zev 7 91D v19 N7
LEV I LD eLg LV
LSV 2 91D zLg 1PV

3N[eA 90IN0S # SSe|n) D uolsuawl(] g uoisuswig Y uoisuswig

A E
0¥l ~™a
[idey] ezv 14 91D v1g A"
idey] g1V | LLD cLg LEV
KA 2 91D clg LV

SN[EA 90IN0S # SSe|) 7 uoisusWl g uolsuaWilg Y uoisusawi(

US 9,195,699 B2

Sheet 13 of 55

Nov. 24, 2015

U.S. Patent

0091 ~a

91 "OId

910 ¥18 éev v

9102lg€lv ¢

L1D€ELg LIV -1

vt

&AL

vl

vl

oLt

US 9,195,699 B2

Sheet 14 of 55

Nov. 24, 2015

U.S. Patent

0081 ~~a 8L "Oid
vy ¢
ccaicdié i
v v icd } JARS) 1ed LYV
910 Legd bV :9& MSN —c2cg 14 910 Leg LV
I1cgd 4 910 Led LV
LL 'Old
00/ ~~
¥1g 1% 910 c¢cd LV
eiLd ! JRRO) I2d LV
ctd 4 910 lcd LYV

3N[e/\ 90IN0S # SSE|) 7 uoisusWi(]

g uoisuawig Y uolsuswiq

US 9,195,699 B2

Sheet 15 of 55

Nov. 24, 2015

U.S. Patent

6L ‘OId
006! ~_"a
910 ¥1a 22V ¥
vy ¢
cecd 1eg ¢ &
V Vv
910 €9 PV 9 910 ZII EIY 2
LI €I LIV i)
- 0

No:,\,

v'e'l

2

v.qu

9t A-v.N.FALq.Nf.

U.S. Patent Nov. 24, 2015 Sheet 16 of 55 US 9,195,699 B2

— QA
< AN
<C < =
<
w §
- a O
q-
N
n
«
(&)
£
a < o
5 (a8 N
0 < - <
g o g
L
-— ~- ™M
< _ O _
< <C <C
a
T . < ¥
. < < «~
oV M
0 <C
(73]
©
(&)
£
S

US 9,195,699 B2

Sheet 17 of 55

Nov. 24, 2015

U.S. Patent

0012 ~/™a

1€ "Old

v ¢ < ¢
ccalea ey Zev

V V
910 1€8 vV 9

910 v1g8 éev v

910¢cld €LV ¢

1D €19 LIV}

-— g
v'et
v'el
v'e v'e'L
o.ﬂ A R A W R

US 9,195,699 B2

Sheet 18 of 55

Nov. 24, 2015

U.S. Patent

€¢ 'Old
0062 ~/~a
L1D I 1£48) €4 344
910 9 €20 1eqg 344

an[e; 90JN0S # SSe|H) D uoisuawl(g uolsuawig Y uoisuswiq

¢¢ ‘Old
0022 ~~a
R4S 8 LD 1€d 844
- 9 910 Leg (844

9N[e/ 90IN0S # SSe|) H uoisuawl g uoisuswig Y uoisuswiqg

US 9,195,699 B2

Sheet 19 of 55

Nov. 24, 2015

U.S. Patent

¢ "Old
00 ~a
I 9
V2O E€CO éé &6
v v v 1440 I LE€D 1€9 LV
€0 1€9 bV L& MBN €20 9 (3%0) 1€9 LV

an[e/\ 90InoS

FSSe[) Dwig gwig vV uwig

US 9,195,699 B2

Sheet 20 of 55

Nov. 24, 2015

U.S. Patent

00§52 ~™a MN G_n_
910 vig eV v
L9 v 2z T ¢
p2OETD i & & & zzZa1za eV 2TV
V vV V V V

€O 1€8 vV L

910 1ed vV 9

910¢cld€lv @

L10€19 LIV (L

A

9t

< g
LAt
A
v'e At
9'l oV leP T}

US 9,195,699 B2

Sheet 21 of 55

Nov. 24, 2015

U.S. Patent

9¢ 'Oid
0092 ~"a
& é& &
A\ \%
18D 128 IV € 1
| v 2
led v 1€D 229 bV 129 22g 12g
led | 1€D 129 PV <« | v
mau _Hrmm_ 2 1€0 129 IV Leg Leg

US 9,195,699 B2

Sheet 22 of 55

Nov. 24, 2015

U.S. Patent

0042 ~™a

¢ "Old

L9 v €
¥2o€2o 22alza & ¢

v V vV
€0 1£8 vV L

v ¢ [4
eza 129 Lev Tev

v V
910 1€8 vV 9

V v
€D 128 vV €

0)

910 vig cev v

910¢laElv ¢

LIDEIG LIV L

A

- g
v'T'

A

v'e v'e'l
|@.+P4vv.m.f A

US 9,195,699 B2

Sheet 23 of 55

Nov. 24, 2015

U.S. Patent

8¢ ‘OlId
0082 ~ /™
1 2
eldarga ¢ ¢
\Y4 \Y4
€D lggd WV €
e1g zig
129 | 1€D erg vy &« | _
12g 2 1€D 2ig LvY 1ed 129

N[eA 90IN0g #SSe[) Hwid guwia vwia

US 9,195,699 B2

Sheet 24 of 55

Nov. 24, 2015

U.S. Patent

0062 ~~a 62 "Old
9Lovigcev v
L9 v € v z z v
veoego Zeatled & & Zza1za eV Zgv
Vv vV vV vV V .
1ED 189 WY L 91D 1Leg PV 9 910¢cldely ¢
I ¢
€18zi9 [
V V
(€O 28 vV € LIDECIG LIV (|
<)
- g
xA!
v'eh
¥'2 vl
L— 1§ 13 3 3
. ettt 1p2'l 9l 9l & V'l VT

U.S. Patent Nov. 24, 2015 Sheet 25 of 55 US 9,195,699 B2

A4d1
I
A31
I
A21
|
A11
3000

A41
A41

2
1
FIG. 30

A41
|
2: A3
A13
B21 C3f
B21 C3f
3: A31 B21 C31

A31
A31

U.S. Patent Nov. 24, 2015 Sheet 26 of 55 US 9,195,699 B2

A31
A31
C31
U~ 3100

Nl
™ -
-~ T

R R N o @ ¥

O O o < «)
+ LL
(a8

R

mn M

" §

—

< < < ® o

<

US 9,195,699 B2

Sheet 27 of 55

Nov. 24, 2015

U.S. Patent

002 ~™a

¢t "Old

b9 v £
¥2oeTo cead e ¢ &

v vV vV
€O 1€8 vV L

v ¢ [4
ccaica Iev v

V V
910 1eg WV 9

| 1 [, 4
€1gcig 12v el

V v
€D tcg lEv €

o

910 vigdcv v

910¢clgeElv e

10 €lg LIV L

A

L ettt pl'}

1A

1A

9'L

v'e e

| 72l VT

US 9,195,699 B2

Sheet 28 of 55

Nov. 24, 2015

U.S. Patent

0088~~~ €€ "OId
& é LY
v _
€D 1eg L&Y € 12V
| v 2
WY ¥ 1ED 1e9 gev LEY Zey Lev
LYY L LED Leg LEY « | 1 v
mau ﬁ:& 2 160 €9 eV LY LPY
I 9 v €
v2D €20 229 1eq & é
\" \"4 \"4
1€D 1eq L7V

US 9,195,699 B2

Sheet 29 of 55

Nov. 24, 2015

U.S. Patent

00VE o~ € 'OId
910 ¥lg ecv v
8 9 y ¢ £ ¥ vz z b
v2J ECD 229 128 lEv 2ev zza1za 1EvV 22V
V vV Vv v v
€D 1€9 PV 2 910 1€g9 vV 9 9102lg €Ly ¢

[

| S 4 4
€1g¢i8 12V ELY

V Y V
€D LEG LEV .. €D |eg IEV € ZIDEIG LIV <L
- 0
- g
A
N>F el
v'.e v'e v'e ¥l
— _
L Jet't Jp2'l ol 9l VT lelVT !

US 9,195,699 B2

Sheet 30 of 55

Nov. 24, 2015

U.S. Patent

GE "OId
00S€ ~™a
I 2
12V €LY
A\
1ED 189 L8V i€
eIV LY
eV | LE€D Leg Lav | |
IEV 2 18D Leg €LV eV 2 12V
|
1SV
|
L7V

U.S. Patent Nov. 24, 2015 Sheet 31 of 55 US 9,195,699 B2

S
[4p]
. g
NN
~ @
m <
& §©.
N~
&
QN
o Y 0
~— m — —
w < _Z ™ TS
(a8 fQV @
(a8
™
o
NS
-~ < hnm
<t <t
<<5a <
<C')

US 9,195,699 B2

Sheet 32 of 55

Nov. 24, 2015

U.S. Patent

00€ ~a NM .o_n_
9o vigeev v
L 9 Yy £ £ ¢ R z N
2¢O £20 28 12a LEv eev zza1zd LEV Zav
V Vv V Vv V
1ED 1€9 WV L 91D 1gd vV 9 910¢cladelv ¢
8 r4 3 F4 ! [
12v €LY e1g9218 2V ElY
Vv V V

L€O 1€9 LEV &

€D 128 LEV €

1D €1 LIV L

A

|ﬂ_ N..P

v'.e ¥'e

—A———1—
L t'e 12l

- 8
v'e'l

A

b'e &AL

Im»:-v.m_f%. gt

US 9,195,699 B2

Sheet 33 of 55

Nov. 24, 2015

U.S. Patent

8¢ 'OId

yoge /|

00C | = * *
06 [¢ed | = *
06 = |ID *
06 | &d {ID *
06 * * | LS
06 ¢ed| = |CS

06| = | IO | ¢S
06| ed| 10 | ¢S
0L) Td| = *
0L * | T | %
OL | ¢d| CO | =
oL * * | IS
oL | ad]| = | IS
0L = | CO | IS
0L] ed] ¢O | IS
oy Id S
ov * €| =
o | Id| €0 =
4 * % | €S
oy | Td| = | ¢S
or = €D €S
o | Id| €D €S
W d 21 S

<—1

O 1d| €D | €S

(d*o*s)agqno 0q €| ID|<CS
04 ad] 0! 1S

st S| 4l 5 ¢

U.S. Patent Nov. 24, 2015 Sheet 34 of 55 US 9,195,699 B2

P3

P1
U 3900

S3

S1

(o))
[4p)
- O
&) L
(e}
o — X O
o
(e 0]
(40}
< O
~l® B =
N e~ N
Ol L OV
- N N
»njwvy v w

US 9,195,699 B2

Sheet 35 of 55

Nov. 24, 2015

U.S. Patent

Ov "Old

0S| = * *
oct| Id| = *
ocl) od| = *
011 * x | IS
06 Id| 1D] ¢S
OL] Td| I} IS
0S| ud| 10| ¢cS
or| 1d| €O IS

S3SSE[D
aderano)

e

o1e80133y

4 d J m.\;woo_u

voor /|

N * *
ovl = | TO | =
ovi * * | CS
ovl x| [D | TS
ocrL| Id| = *
0cl| Td| = *
o1l * = | IS
06 Id} 1D] =
06 Id] | TS
06 Idf 12}¢TS
oL #[CO| =
0L dd| WO} =
oL |l | IS
oL x| CO| IS
OL{ Td| TO| IS
0¢ | 10| =
0S| | =+ |¢S
0s | 1D| TS
(44 [€I =%
ov Idf €D] =
o | Id| = |[1IS
ot x| €D| IS
ov| Id| €O| IS
N d Il S

0 7d| 121 TS

{3 | of | o]
(dors)aqno oy 1d| €2 1S
04 udl TO] IS

2o0r /1 W dl 2ol s

US 9,195,699 B2

Sheet 36 of 55

Nov. 24, 2015

U.S. Patent

Ly "Old

00l ~™a

Spou pPTTYD
anTeA PTTYD

(T 9 ¥ € € ¥]
[ved €¢D ged ted TEVY gVl

[22T 2] =UusaplTyd 1Ty
£ = sI3TYU
[T€D T€9 TPY] = punoq I=Mof
L :9poN
[v [4 Z 1= 9pou pPTTYD

[zza Ted TEY zZzvl anTeaA PTTIYD

[2 2] = usapTTus 19Ty

z = sI9TYU

[9TD T€€ TPY] = punoq Iamof
9 :9poN

(T ¢l = Spou pTTYD
[TZ¥ €T¥] = onTeA pPTTYD

[2] = usapIIyo I8ty

T = SISTYU

[T€D T€9 TEV] = punoq Iamot
.€ :9PON

[1 T 1 T¢l-= IpoUuTPTTYD
(€ra Z19 Tegv €TI¥] = on(ea plTyd
[2 2] = usapTTyo a9y
z = sIaTYU
[T€D TZE TEV] = punoq Ismol
€ :9pON
0 = sI3TYU
[9TD §T1€ 2ZT¥] = punoq Ismo
¥ :9poN
0 = SIS TYUU
(91D ZTd £€I¥] = punoq Iamol
¢ ‘9pON
0 = sIxaTyU
[LTD €T€ TI¥] = punoq Ismol
L :9pON

/+ PTTUD Ydes JO X3putl SPON

/+ PTTUD UDEd JO 8nTeA

/x AUdaexaTy yoses Ul USIPTIYD JO I2quUMN
/x 9POU 33Ul Ul SOTYDIBAITH JO IDQUMN

/x ©POU 92Ul JO punoq IaMmoT

v/
x/
v/
v/
x/

! [UBIPTTYOU)SPOUTPTTIYD ¥4S

! [UBIPTTYOU]ANTRA™PTTYD vas
{ [SIATYU) UBIPTTYD IBTY zas
{SITYU zZgs

! [swrpu] punoq IamoT $gs

US 9,195,699 B2

Sheet 37 of 55

Nov. 24, 2015

U.S. Patent

ey ‘OId
00Eh ~
I 9 v € £ ¥
veneen 229129 Lev aey
\Y4 \V4 \Y4
1€D Leg LYY]
919 129 Iy 1o} Aienpd
00¢r ~™a N.v .G_u_
91D leg eV 8jdwex3

US 9,195,699 B2

Sheet 38 of 55

Nov. 24, 2015

U.S. Patent

y ¢ vy @
¢cd g cev LEV

A\

t]30) ied

910 4] Iy 4oy Alenp

0057 o~
Sy "Old
00vr ~~a
v "Old
910
_
€20
_
€D

L9 v €
vcO €¢0 <¢c8q led
\% v
1€0 led
910 lcd

£ v
LSV 22V
A\
LY gl
LV 10} AienD

US 9,195,699 B2

Sheet 39 of 55

Nov. 24, 2015

U.S. Patent

00y ~"a N.v .G_n_
eIy 2ig 910 zig eIV 2
| |
LEY 129 91D 2Lg eV 10} Alonpd
0097 ~~a y 2 y 2
12g zced leg 2gv lev
9 ‘Ol | y y
led 91D Leg KA 9
91D led eV 10} AisnpD

US 9,195,699 B2

Sheet 40 of 55

Nov. 24, 2015

U.S. Patent

8t "OId
008y ~ ™=
I 9 v € £ ¥
[1€D] 20 €20 ¢<edled lev ey
[1ed] v v 2
[LyV] L€D Leq WY L

US 9,195,699 B2

Sheet 41 of 55

Nov. 24, 2015

U.S. Patent

6v 'OId
006y ~_"a
[£:1€D 1€9 LpV]<=
Il 9 v € £ ¥
[LeD] ¥20 €20 ¢22aled eV aegv
[Legd] v v v
[LyV] 1D Leg A

US 9,195,699 B2

Sheet 42 of 55

Nov. 24, 2015

U.S. Patent

0S 'Ol
000G ~ ™
1 9 v € £ v
[v2D] <= [1€D] ¥20 €20 <ccdled eV eev
[Led] v v v
[LyV] 1€D Led A

US 9,195,699 B2

Sheet 43 of 55

Nov. 24, 2015

U.S. Patent

¢S Ol

002§ ~a
[L:¥2D 1e9 V] [1:v2D 1eg tevl [1:¥2D 1e9 12Vl [L:¥2D 1€9 LIV]
[L:v2D 129 bVl [1L:v2D Leg ievl (I :+2D 12g tevl [1:veD 129 LIV]
[L:veocig vyl [L:veoelg eyl [1L:v2D€elg tev] [L:¥2D€1g LIY]
[L:z1D1eg oyl [L:2101eg ievl [1: 21D 1€9 Lev] [L:21D €9 LIV]
(L2012 vyl [L:21012g tevl [1: 21D 12g tevl [L:21D 129 L1V]
[L:z10€1g vl [L:210€1g1evl [1:210¢€19 tevl [L:210€19 L1Y]

1S "OId
001G ~_™a
[v2D ‘L1101 <= [¥22]
[Leg ‘129 ‘e1gl <= [1£g] LLD ke LIV L

[LpV Lev eV L iY] <= [IvV]

US 9,195,699 B2

Sheet 44 of 55

Nov. 24, 2015

U.S. Patent

00V ~™a
[9:€20 1€9 vVl [9:910 Leg vY] <
¥S "Old
v ¢ v 2
[€2D '910] <= [e2D] czd legd 2ev lev
[1ed] v v
[1pv] 910 Led 1PV 9
00ES ~ ™ €s .G_H_
I 9 v € £ ¥
[e2D] <= [1€D] v2D €20 224 lead eV cev
[1ed] v v v
[1pv] 1€D leg Ibv L

US 9,195,699 B2

Sheet 45 of 55

Nov. 24, 2015

U.S. Patent

9G "OId

0095 ~~™a

[: €20 2ea vVl [v: €20 229g 2ev]
[v: €20 1 Wyl [¥: €20 v1g 2ev]
[v: 91D 2ega vl [v:91D 2eg eev]
[V :910 19 vl [¥:91D ¥19 2ev]

[€2D ‘910]

[cza ‘vig] <= [22d] QLD v1g 2ev ¥
[LpV ‘2eV] <= [1pV]

0055 ~a

GS 'Old

v ¢ v ¢
[€2D ‘910] c2g leq 2zv Lev

[ceal <=[ied] v v
[1vv]l 910 led IV 19

US 9,195,699 B2

Sheet 46 of 55

Nov. 24, 2015

U.S. Patent

LS "Old

00/8 ~ ™
v 2 v 2
[€2D ‘910l 22g 12g 2zv Lev
[1zgl <=[1ed] v v

[1pV]

910 ied IV 9

US 9,195,699 B2

Sheet 47 of 55

Nov. 24, 2015

U.S. Patent

008G ~a

8G 'Old

[2:€2D 128 V]
[2:€2D 219 V]
[2:91D L2g V]
[2:91D 219 V]

[2:¢€2D 129 tev]
[c:€2D219 Lev]
[2:910 129 1ev]
[2:91D0¢21g Lev]

[€2D ‘910]

[1eg ‘zia]l <=[12d]

[Lpv Lev'elv] <= (V]

[2:€2D 12g €LVl
[2:€2D02Ig €LVl
[2:91D 12a €1V]
[2:91D021a€lV]

910 ¢ig €iv ¢

US 9,195,699 B2

Sheet 48 of 55

Nov. 24, 2015

U.S. Patent

09 'OlId

[t : €20 Leg eev] [v: 910 Lea zev]

0009 ~™a
[€2D ‘910]
[teal 9LOvigeevY b
[2ev]
0065 ~/~a vy 2 y 2
[e2D ‘910] ccd legd eev Lev
6S "OI4 [1eg] v v

[22v] <=[1+V] 91D Leg vV 9

US 9,195,699 B2

Sheet 49 of 55

Nov. 24, 2015

U.S. Patent

0029 ~™a

¢9 "OId

[2:€20 1e9g V]
[2:91D 1€9 IPV]

[2:¢€2D 1eg 1ev] [2:¢€2D tegelvl
[2:91D 1eg tev] [2: 91D 1eg gLVl

[€2D ‘91D]

[tegl 91D 2ig civ e
[Lev'elvl <=[1ev]

19 "'OId
v 2 v ¢
0018 ™ [£2D ‘91.0] 2zd 129 2zv Lev
[1eg] % v
[tevl <=[1vv]l 91D Leg R7AVAN)

US 9,195,699 B2

Sheet 50 of 55

Nov. 24, 2015

U.S. Patent

¥9 "OId
009 ~™a
Il 9 2> £ ¥
[LeD] $2D0€2D0 22galcgd Lev ey
[22gal <=[1e4] v v v
[1yV] €D Leg RA A
€9 'OId
0089 ~™a
v 2 v 2
[€2D ‘910] 22ga Legd 22V lev
[1ed] v v
[Levl <=[1pv] 91D led bV 9

US 9,195,699 B2

Sheet 51 of 55

Nov. 24, 2015

U.S. Patent

0099 ~™a

99 "OId

[1eD]

[Led] <=[1ed]

[LV]

I 9 v €
¥2O €20 ¢c9g tcdg

\"4 \"4

35%0) led

£ v
IEV ccV

A\

v L

0059 ~"a

g9 "Old

[22g ‘v1g] <= [ced]
[1yY ‘2ev] <=[IpV]

[1ED]

[¥:1eD 229 vl [v: 1€D 229 22Vl
[v:1e0v1g9 1wVl [¥:1€D ¥1g 22Vl

910 vig eV v

US 9,195,699 B2

Sheet 52 of 55

Nov. 24, 2015

U.S. Patent

19 "OId
00/9 ~_a
[e:1€D 12g vVl [€:1€D L2g Lev]
[1ED] crgazeig Lev ey
[1z2d] v \%
[ipv ‘Levl<=[1vv]l 1€D 129 IEV €

US 9,195,699 B2

Sheet 53 of 55

Nov. 24, 2015

U.S. Patent

0089

89 "OId

[1:

LD €19 LpV]

2D 1£9 LhV]
1 ¥2D 129 v
1 ¥20 €19 Lhv]
21D 19 Y]
121D 129 vl
S210 €19 V]

[g:1eD1eaeivlli:

1 1e02ig Y]
D10 €19 1Vl

(€20 1e9 V]
291D 1e9g V]

1€20 129 W]
1gg02ia vl
191D 129 V]
-o1D2Lg vl

¥2D 1eg Lev]
' ¥2D 129 Lev]
1v20 €19 tev]
21D 1eg Levl
221D teg Lev]
S0 €1g LeV]

L€D 1£9 L2V]

1€ teg Levl
1 1€ 2ig Lev]
110 elg eyl
D 1€ 129 V]
- 1€0 229 V]
D10 Y19 Y]
. €20 1€9 Lev]
191D 1£9 LeV]
191D 1€9 LpV]
€20 129 Lev]
:g20219 Lev]
191D 129 LeV]
1910219 Lev]
. €20 229 Lvv]
€20 719 V]
910229 Lvv)
1910 v19 1hV]
€20 1£9 pV]
1 ¥20 L9 Lev]
' ¥20 129 ev]
¥20 19 Levl
S 21D 1eg Lev]
121D 129 Lev]
1210 €19 Lev]

[1:
D LED 1£9 LeY]
D LED 129 €LV]
D 1ED 129 LIV]
gD zig eyl
S0 €19 LIY]
€D 129 eVl
- 1€D 228 2ev]
11D 18 gev]
€20 19 €1vY]
1910 1eg €1V]
191D 1£9 ¢ev]
€20 leg eyl
1g2021g eVl
1910 129 €1V]
1910219 €1Vl
1 £20 229 2ev]
1 €20 19 2ev]
191D 229 2ev]
191D ¥18 2ev]
1910 1£9 tpV]
1 ¥20 1£9 LIV]
1¥2D 129 HiV]
'¥20 €19 LiY]
221D 19 L]
221D 129 LiIV]
D10 €18 LIV]

1€ 1€9 LPV]

LD 1€9 LIV]

US 9,195,699 B2

Sheet 54 of 55

Nov. 24, 2015

U.S. Patent

69 'OId
Y069
/ 9069

| ¥20 o) L

9 €20 o) L \

v geg q L

> 129 g . [LED €9 V] = punoq jemo| 2 8pPON
£ eV v L

% AA) v /

b 229 g 9 2069

2 129 d 9 /

2 LEV v 9 18D Leg 874 L

v cev v 9 910 g RA 9

| KA v £ 1€D Leg LEV £

2 eIy v 2 1ED leg LEY e

b eLg d € 91D vig A 1%

2 cid g € 910 2Lg eLY c

! ¥4/ v £ LI clLg LY !

__c eIy v € DMOT gMO] Y MO ai sseid
al oPON __ [eAwId wig dissepn

US 9,195,699 B2

Sheet 55 of 55

Nov. 24, 2015

U.S. Patent

£20L
1SOH

\ 4

S0
JTOHINOD
HOSHNO

0L '9OId
S5or Ty
Z10Z .
€007
» 3DV4HILNI
NOILYDINNWWOD H0SS3004d
100Z)
sng <
B00Z 7007 507
32IA3d AHONGIN
39vHOLS NOd NIYIN

€104
30IA3A
1NdNI

LI0L
AV1dSId

US 9,195,699 B2

1
METHOD AND APPARATUS FOR STORAGE
AND RETRIEVAL OF INFORMATION IN
COMPRESSED CUBES

RELATED APPLICATIONS

The present application claims the benefit of U.S. Provi-
sional Patent Application Ser. No. 60/493,335 filed on Aug. 8,
2003 entitled “Compressed Cube,”, the contents of which are
hereby incorporated by reference.

FIELD OF THE INVENTION

The present invention relates to database systems and more
particularly to storage and retrieval of information in com-
pressed cubes.

BACKGROUND OF THE INVENTION

Relational databases have become the dominant database
technology for businesses to keep track of their sales, trans-
actions, and other affairs. Designed for efficient selection,
storage, and retrieval of data, relational databases are used to
house large quantities of detailed data in data warehouses.
The information housed in data warehouses can be analyzed
to yield critical information about a business, such as sales
trends and product line profitability, and can provide a critical
edge in an increasingly competitive marketplace.

The data processing required to answer analytical ques-
tions is quite different from the data processing required to
answer transactional questions. For example, while a trans-
actional query might ask, “When did order 84305 ship?”, an
analytical query might ask, “How do sales in the Southwest-
ern region for this month compare with plan or with sales a
year ago?” The first question involves the selection and
retrieval of data usually contained in a single row, but the
second question involves inter-row calculations, time series
analysis, and access to aggregated historical and current data.
This data processing is known as online analytical processing
(OLAP). An OLAP application is a computer program
designed to access the company’s raw data, aggregate the data
into various summaries, and present the summaries to the
company’s data analysts. Various kinds of aggregations may
be performed, and the most common include summation (e.g.
totaling sales) and finding maximums and minimums.

Aggregation is a cornerstone operation frequently done in
virtually all large data warehouses. When data is aggregated
on many attributes or dimensions, however, the amount of
summary data becomes much larger than the amount of detail
data that was input. However, conventional attempts to per-
form aggregation require processor time that is proportional
to the amount of summary data. Since the amount of summary
data outweighs the input data, aggregation can become very
expensive.

Sparsity is one way to characterize input detail data.
Although the detail data can be characterized by values for a
number of different attributes or dimensions, there may be
many combinations of values that are not available (NA) in
the detail data. Sparsity is typically measured in terms of the
number of logical cells that have a non-NA value relative to
the total size of a wireframe, which can be conceived as a
space that encloses the possible attribute or dimensional val-
ues that the detail data can take. For example, if the wireframe
has three attributes or dimensions with one hundred possible
values in each attribute or dimension, there are one million
possible cells. If a variable dimensioned by these three
dimensions has 10,000 non-NA values, then the variable is

10

15

20

25

30

35

40

45

50

55

60

65

2

1% dense. If there were 100 such non-NA cells, then it would
be 0.01% dense. Ifthere were only one non-NA cell, it would
be 0.0001% (or 107*%) dense.

In traditional multidimensional database systems, data is
stored as a linearized multi-dimensional array. The dimen-
sions operate as the array indexes. In this format, any cell can
be retrieved very quickly by simply computing the Cartesian
product of the dimension offsets that correspond with the
desired values and looking that value up in the linearized
array. However, when the data is sparse, many of the cells in
the array are NA (i.e., null). In these cases, long stretches of
the stored array are empty. Thus, the space occupied by the
data is dwarfed by the space occupied by null values.

Relational databases do not generally store data multi-
dimensionally. Instead, data is stored in rows, with the value
of'each column explicitly included. Thus, if a fact table con-
tains a list of dimensions and a measure, each row contains
data values for each dimension and the measure. By contrast,
only the measure is stored in the multidimensional data
model, because the dimension values are implicit in the loca-
tion that data is written to. Since relational databases do not
store anything for dimension combinations that have no data,
they are more efficient than purely multidimensional storage
for somewhat sparse data.

When data is at least 20% dense, then purely multidimen-
sional storage is usually the most efficient, as it does not store
the dimension values. However, as data density decreases, the
number of values stored on a physical page gradually
decreases. Similar to the relational model, the multidimen-
sional space can be compressed down to dimension combi-
nations where data exists. This is done by constructing a B+
tree which stores the index values of the dimensions where
data can be found. This mechanism is called composite
dimensions (composites). Using a composite, several dimen-
sions that are sparse relative to each other can be transformed
into a much more dense space. This densification is accom-
plished by using a B+ tree to map the wireframe positions of
the base dimensions to a single integer offset. Composite
dimensions may perform well when the number of entries
within the B+ tree does not grow large. Once the composite
grows too large, there may be a sharp decrease in perfor-
mance. For example, this decrease may occur once the com-
posite grows beyond the tens of millions of physical entries.

As data becomes more sparse, every dimension may be
placed in the composite, thus imposing a limit on the size of
any variable within the system. In order to avoid bloating the
composite, it may be desirable to include one or more dense
dimensions. As variables become more sparse, this desire
becomes increasingly impractical. An example of this phe-
nomenon is changing time data from monthly to daily. Typi-
cally, monthly data is relatively dense so that the monthly data
will often be outside the composite. However, daily data is
usually relatively sparse, so it may be desirable to put time in
the composite. Historically, composites have worked well
with data that is at least 107°% dense, although this number
can vary greatly depending on the number and size of dimen-
sions.

FIG. 1 illustrates a set of three hierarchies used as a work-
ing example, in which an “A” dimension 102 might corre-
spond to region, a “B” dimension 104 to time, and a “C”
dimension 106 to product classification. In the region hierar-
chy in the “A” dimension 102, position A11 may correspond
to Pittsburgh, position A12 to Philadelphia, and position A13
to Washington, D.C. A21 is a more general level in the hier-
archy and corresponds to Pennsylvania, and A31 is an even
higher level of generality, e.g. the east cost, that includes
Pennsylvania (A21) and Washington D.C. The highest level

US 9,195,699 B2

3

in this example, A41 would correspond to the USA and would
include the east coast (A31) plus California (A22). This
example includes skip-level (the hierarchy is missing values
at intermediate levels (e.g. the city Washington D.C. at A13
has no state level aggregate), and ragged hierarchies, where
the detail exists on different logical levels. An example is a
company that tracks sales at the city level on the east coastand
at the state level on the west coast. Thus, the hierarchy for the
“A” dimension is both skip-level (A13 goes to A31) and
ragged (A22 is not at the same level as A11, A12 and A13).

The “B” dimension 104 also has a defined hierarchy, in
which the most general level is B31 for sales made at any
time. Positions B21 and B22 may correspond to years (e.g.
2004 and 2003, respectively), and positions B11, B12, B13,
and B14 to the months of January, February, March, and
December, respectively. The hierarchy in the “C” dimension
106 is simpler, in which there are two product models C16
and C17 in two lines of products (C23 and C24, respectively).
The C31 position corresponds to a company’s products.

Within these hierarchies, familial relationships are implicit
in the structure; for example, A11 may be viewed as a child of
A21, as the grandchild of A31, and as a great-grandchild of
Ad41. Similarly, A41 may be viewed as the parent of A31 and
A22, the grandparent of A21 and A13, and the great-grand-
parent of A11 and A12. Using graph theory terminology, A11
is connected to A21 via a single edge connection, i.e., a child
is connected to its parent in the hierarchy via a single edge
connection. Additionally, A41 is at a top level of the A hier-
archy 102, and A11, A12, and A13 are all on a same level,
which may be called a leaf level. A top-down path from A41
to A12 navigates the nodes Ad1, A31, A21, and A12, in order
from the top of the hierarchy down, following edges connect-
ing the respective nodes. A bottom-up path from A11 to A41
navigates the nodes A11, A21, A31, and A41, in order from
the bottom of the hierarchy up.

A roll-up operation on the A hierarchy 102 navigates the
nodes in a strict bottom-up direction, following the edge
connecting a particular child node to its respective parent
node (e.g., from A12 to A21 to A31 to A41). A drill down
operation on the hierarchy navigates the nodes in a strict
top-down direction, following the edge connecting a particu-
lar parent node to one of its respective children nodes (e.g.,
from A41 to A31 to A13). Without loss of generality, the
hierarchy structure may be inverted so that the relationships
and operations are described in a reverse manner.

FIG. 2 depicts three input rows 200 for the example. Each
row is defined by a “tuple” that includes a position from each
dimension. For example, input row <A11 B13 C17> includes
a position A11 in the “A” dimension (e.g., Pittsburgh, Pa., of
the east coast), position B13 in the “B” dimension (e.g. March
2004), and position C17 to product model C17. The number
on the left-hand side of each row represents a measure value
can be assigned to the input row. These exemplary measure
values are chosen to illustrate which input rows produced
which aggregate value, but in practice, measures correspond
to information that a business measures, for example, to the
amount of sales in thousands of dollars for a particular prod-
uct in a corresponding city and month.

One exemplary operation involved in aggregating data is
“rollup.” For each ofthe input rows a new row for each logical
position is produced to represent data at this location. A new
row is stored whether or not it produced a new aggregation
value. Thus, the output value is stored even if it is identical to
the input. This is done by processing each hierarchy in turn in
order to produce the aggregation path.

FIG. 3 depicts the creation of new rows 300 by rolling up
the A hierarchy. For this example, no new values are pro-

10

15

20

25

30

35

40

45

50

55

60

65

4

duced. Thus, for the 6 new rows produced, each has the same
value as the row from which it was derived. The operation
thus consumed time and space but produced no new informa-
tion.

FIG. 4 depicts a rollup 400 on the B hierarchy. This aggre-
gation is performed on the rows produced by rolling up the A
hierarchy as well as the input rows. Again, after producing 17
new rows, only one (A41, B31, C16) has a new value (6). All
of the other rows still have the same value as the input row
from which they were derived, as only the “6” cell has more
than one immediate child in the join hierarchy. All others
represent the rollup of one child into its parent.

FIG. 5 depicts a rollup 500 on the C hierarchy. The addi-
tional blocks indicate rows that are produced by rolling up the
C hierarchy. This rollup produces several new aggregates, as
indicated by the nodes labeled with “3” and *“7.” However,
several times, multiple children were independently aggre-
gated into the value 3 (e.g., <A31, B21, C31>, <A31, B31,
C31> and <A41, B31, C31>). In FIG. 6, these nodes (indi-
cated by the dotted box) were all aggregated from the same
leafnodes (1 and 2). However, even though the number is and
will be identical, the addition of 1 and 2 is done multiple
times, because the immediate children of each “3” node are
different.

Thus, the three input rows produced a large number of new
rows, but there was relatively little actual aggregation. Most
new rows were generated from one input row, so required no
addition. Three input rows produced 75 final output rows. In
FIG. 6, it can be seen that these 75 rows can be broken into six
regions where every row in a region shares the same value.
Regions 6, 7, and 3 are the regions produced by aggregation.
In region 3, three points of aggregation all produce the same
value. The lowest point in a region where aggregation occurs
is called a lower bound. In region 6, the lower bound is
represented by the tuple <A41 B31 C16>.

Current OLAP customers are pushing towards data models
that are larger and more sparse than can be efficiently sup-
ported by many conventional products. The observation of
redundancy inherent when extremely sparse data is rolled up
in a multidimensional space has been a topic in many research
circles. Recent research has leaned toward avoiding storing or
logically differentiating these redundant tuples. For example,
“Quotient Cube: How to summarize the semantics of a data
cube,” describes how an aggregated cube can be reducedto a
series of classes that describe an entire aggregated cube with
afraction of the storage. If many of the values in the aggregate
space repeat, an index of repeating values can be created in a
logically contiguous region of a “cube lattice” and only store
a single value. The build time for the structures described in
the paper, however, includes a “brute force” approach which
requires excessive processing resources and would accord-
ingly not be feasible in business environments.

Therefore, there is a need for data processing of large
amounts of sparse detail data that does not require infeasible
amounts of processing time.

SUMMARY OF THE INVENTION

This and other needs are addressed by the present invention
by reducing redundant storage and computation with meth-
ods and data structures that build summary information using
processing time that is usually proportional to the input data
and the depth of hierarchies. For many data warehouses, this
is faster than conventional mechanisms. Some tests using
realistic data sets have shown performance improvements 10
to 100 times faster than conventional techniques.

US 9,195,699 B2

5

The present invention stems from the realization that a
major factor contributing to aggregate bloat at very low den-
sities is that many higher levels of generality in an aggrega-
tion hierarchy (e.g., at the month level instead of the day level)
may often include aggregate data for no more than one
descendant node at the leaf level. Aggregation of the data then
causes redundant physical rows to be added to a table, one for
each combination of parent values with the same single
descendant leaf. Each of these new tuples (of the rows keys)
represents a different combination of parent attribute or
dimension values, but contains the same data value as the
corresponding leaf. For the standard table, which may have
up to 7 or 8 base attributes or dimensions key columns with
aggregation hierarchies, these redundant parent rows can end
up taking many times the storage of the leaf rows whose data
values they duplicate.

Methods, systems, and articles of manufacture consistent
with the present invention dispense with the storage of redun-
dant parent rows, instead storing each distinct data value only
once, or at most a very small number of times. Each such
distinct value, along with information about which ancestor
tuples the value applies to, will define what is known as a
“coverage class.” The ancestor tuples within a coverage class
are virtual, and can be derived at need by special-purpose
looping or point-access algorithms. This technology provides
for very fast aggregation and very lean storage of very large
and sparse data. It may not work well if data is too dense, but
it performs orders of magnitude faster than normal tables if
data is sparse.

A method of generating an index for a body of data is
disclosed. The method receives a plurality of values associ-
ated with a plurality of respective attributes characterized by
a plurality of respective hierarchies. A parent entry in the
index to include a plurality of bounds associated respectively
with the values and located at respective positions within the
respective hierarchies is generated. A child position associ-
ated with one of the bounds and located at a first position in
one of the respective hierarchies is determined, wherein the
child position is strictly included within the one of the bounds
within the one of the respective hierarchies. A child entry in
the index to include a child bound that is located at a second
position in the one of the respective hierarchies is generated,
wherein the child bound is strictly included within the one of
the bounds within the one of the respective hierarchies, and
the child position is stored in association with the parent entry
and the child entry.

A computer-readable medium bearing an index for a body
of data defined by a plurality of attributes, the attributes
characterized by respective hierarchies, is disclosed. The
index comprises a first indicator of a parent coverage class,
wherein the parent coverage class specifies a plurality of
parent bounds, each of the parent bounds located in one of the
hierarchies characterizing the attributes. The index further
comprises a child position within one of the hierarchies for a
corresponding one of the attributes, wherein the position is
strictly included in one of the parent bounds specified for the
corresponding one of the attributes; and a second indicator of
achild coverage class, wherein the child coverage class speci-
fies a plurality of child bounds, each of the child bounds
located in one of the hierarchies characterizing the attributes.

A method of searching for an item using an index for a body
of data defined by a plurality of attributes, said attributes
characterized by respective hierarchies is disclosed. The
method compares a value of the item in a first attribute with a
first attribute lower bound value associated with a first node of
the index. If the value of the item in the first attribute is lower
in the hierarchy of the first attribute than the first attribute

20

25

40

45

55

6

lower bound value associated with the first node of the index,
then it is determined whether a child value of the first attribute
lower bound value associated with the first node of the index
is included in a path from the value of the item in the first
attribute to the first attribute lower bound value associated
with the first node of the index based on the hierarchy of the
first attribute. If the child value is included in the path, the
value of the item in the first attribute is compared with a first
attribute lower bound value associated with a second node of
the index, based on an indicator of a coverage class associated
with the child value included in the first node of the index.

A method of traversing a body of data defined by a plurality
of attributes, the attributes characterized by respective hier-
archies, using an index, is disclosed. The method initializes
an array on each one of the plurality of attributes based on a
lower bound value of each attribute which is associated with
a child node of a plurality of nodes included in the index, and
a path from each lower bound value of the child node to a
value of a parent node lower bound value in each of the
respective hierarchies, wherein the child node is determined
by accessing a child coverage class indicator associated with
the parent node, and generates a cross product of rows based
on the array on each one of the plurality of attributes.

Still other aspects, features, and advantages of the present
invention are readily apparent from the following detailed
description, simply by illustrating a number of particular
embodiments and implementations, including the best mode
contemplated for carrying out the present invention. The
present invention is also capable of other and different
embodiments, and its several details can be modified in vari-
ous obvious respects, all without departing from the spiritand
scope of the present invention. Accordingly, the drawing and
description are to be regarded as illustrative in nature, and not
as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which like reference numerals refer to similar
elements and in which:

FIG. 1 depicts exemplary hierarchies of data;

FIG. 2 depicts exemplary input rows for building an index
according to an embodiment of the present invention;

FIG. 3 depicts exemplary creation of new rows by rolling
up a hierarchy according to conventional SQL groupby rollup
techniques;

FIG. 4 depicts a rollup on the B hierarchy according to
conventional SQL groupby rollup techniques;

FIG. 5 depicts a rollup on the C hierarchy according to
conventional SQL groupby rollup techniques;

FIG. 6 depicts rows produced from the three exemplary
input rows;

FIG. 7 depicts a flow of steps for generating an index
according to an embodiment of the present invention;

FIG. 8 depicts a flow of steps for searching an index
according to an embodiment of the present invention;

FIG. 9 depicts a flow of steps for traversing an index
according to an embodiment of the present invention;

FIG. 10 depicts an overview of a cube traversal while
computing aggregates;

FIG. 11 depicts an exemplary index at the beginning of an
exemplary aggregation according to an embodiment of the
present invention;

FIG. 12 depicts an exemplary in-memory data structure
used to perform aggregation according to an embodiment of
the present invention;

US 9,195,699 B2

7

FIG. 13 depicts pushing up 1 level in the A hierarchy,
sorting new rows, and identifying new classes according to an
embodiment of the present invention;

FIG. 14 depicts a state of the building process in which a
cell is not moved up the hierarchy until the other rows match
the same height, according to an embodiment of the present
invention;

FIG. 15 depicts reaching the top of the A hierarchy without
having any matching rows according to an embodiment of the
present invention;

FIG. 16 depicts a state of the index in which processing has
rolled up the A hierarchy and the accumulation rows are now
atthe top level of the A hierarchy according to an embodiment
of the present invention;

FIG. 17 depicts rolling up the B hierarchy according to an
embodiment of the present invention;

FIG. 18 depicts an aggregation occurring when two rows
match according to an embodiment of the present invention;

FIG. 19 depicts coverage class 6 in the index according to
an embodiment of the present invention;

FIG. 20 depicts previous hierarchies being descended
when a new coverage class is created according to an embodi-
ment of the present invention;

FIG. 21 depicts a drill down on the A hierarchy according
to an embodiment of the present invention;

FIG. 22 depicts multiple input cells in the worklist replaced
with a single cell from a new class according to an embodi-
ment of the present invention;

FIG. 23 depicts processing the C hierarchy when the top of
the B hierarchy is reached according to an embodiment of the
present invention;

FIG. 24 depicts matching rows after pushing up a level of
the C hierarchy according to an embodiment of the present
invention;

FIG. 25 depicts the creation of coverage class 7 according
to an embodiment of the present invention;

FIG. 26 depicts drilling down the B hierarchy by construct-
ing rows of the input children according to an embodiment of
the present invention;

FIG. 27 depicts drilling from coverage class 7 back down
the B hierarchy according to an embodiment of the present
invention;

FIG. 28 depicts recursive descent of the B hierarchy for
coverage class 3 according to an embodiment of the present
invention;

FIG. 29 depicts determining a lower bound of the coverage
class 3 according to an embodiment of the present invention;

FIG. 30 depicts drilling down the A hierarchy from cover-
age class 3 and determining coverage classes 1 and 2 accord-
ing to an embodiment of the present invention;

FIG. 31 depicts descending one more level on A for both
coverage classes 1 and 2 according to an embodiment of the
present invention;

FIG. 32 depicts descending the A hierarchy for coverage
class 3 and filling in child information according to an
embodiment of the present invention;

FIG. 33 depicts popping the recursion stack and beginning
a drill down of the A hierarchy according to an embodiment of
the present invention;

FIG. 34 depicts drilling down the A hierarchy from the 7
coverage class to yield the 3' coverage class according to an
embodiment of the present invention;

FIG. 35 depicts drilling down the A hierarchy further to
determine whether the lower bound for coverage class 3' has
been determined according to an embodiment of the present
invention;

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 36 depicts completing class 3' according to an
embodiment of the present invention;

FIG. 37 depicts the completion of drilling down the A
hierarchy from coverage class 7 to coverage class 3' to cov-
erage classes 1 and 2 according to an embodiment of the
present invention;

FIG. 38 depicts rewriting the SQL. CUBE operation into a
dimensional form according to an embodiment of the present
invention;

FIG. 39 depicts turning columns into dimensions accord-
ing to an embodiment of the present invention;

FIG. 40 depicts aggregating a 4 row input table according
to an embodiment of the present invention;

FIG. 41 depicts an exemplary data structure used for leaf
nodes to store coverage class information according to an
embodiment of the present invention;

FIG. 42 depicts processing for a point query of the index
according to an embodiment of the present invention;

FIG. 43 depicts analyzing coverage class 7 to determine
children of a cell value according to an embodiment of the
present invention;

FIG. 44 depicts using the C hierarchy to trace the path from
one cell value to another according to an embodiment of the
present invention;

FIG. 45 depicts determining a lower bound of the C hier-
archy in coverage class 6 according to an embodiment of the
present invention;

FIG. 46 depicts a determination that coverage class 2 needs
to be drilled using the B hierarchy according to an embodi-
ment of the present invention;

FIG. 47 depicts a determination that the correct coverage
class has been reached according to an embodiment of the
present invention;

FIG. 48 depicts starting processing with the initial lower
bounds of the top coverage class according to an embodiment
of the present invention;

FIG. 49 depicts producing output rows using dimension
arrays according to an embodiment of the present invention;

FIG. 50 depicts replacing an array on a dimension with that
child value according to an embodiment of the present inven-
tion;

FIG. 51 depicts beginning a traversal of the index accord-
ing to an embodiment of the present invention;

FIG. 52 depicts producing a Cartesian product of arrays
according to an embodiment of the present invention;

FIG. 53 depicts processing in a next child according to an
embodiment of the present invention;

FIG. 54 depicts a depth first search from coverage class 7 to
coverage class 6 according to an embodiment of the present
invention;

FIG. 55 depicts drilling down children starting with the
most significant hierarchy greater than or equal to the hierar-
chy that was drilled down to reach this point according to an
embodiment of the present invention;

FIG. 56 depicts a state wherein processing is at the bottom
of'the C hierarchy according to an embodiment of the present
invention;

FIG. 57 depicts a state of processing at coverage class 6
according to an embodiment of the present invention;

FIG. 58 depicts expanding the B and A arrays based on the
drill path between the upper and lower bounds according to an
embodiment of the present invention;

FIG. 59 depicts drilling down the A hierarchy according to
an embodiment of the present invention;

US 9,195,699 B2

9

FIG. 60 depicts drilling down the A hierarchy without
expanding the array between the lower and upper bounds of
the B hierarchy according to an embodiment of the present
invention;

FIG. 61 depicts drilling down the first child of the A hier-
archy according to an embodiment of the present invention;

FIG. 62 depicts visiting coverage class 2, expanding the A
array and producing a cross product according to an embodi-
ment of the present invention;

FIG. 63 depicts returning processing to the parent accord-
ing to an embodiment of the present invention;

FIG. 64 depicts returning to coverage class 7 according to
an embodiment of the present invention;

FIG. 65 depicts drilling down the B hierarchy according to
an embodiment of the present invention;

FIG. 66 depicts drilling down the B hierarchy according to
an embodiment of the present invention;

FIG. 67 depicts drilling down to coverage class 6 according
to an embodiment of the present invention;

FIG. 68 depicts a list of 75 rows produced by a traversal of
the exemplary index according to an embodiment of the
present invention;

FIG. 69 depicts compressed cube access structures stored
within a relational database according to an embodiment of
the present invention; and

FIG. 70 depicts a computer system that can be used to
implement an embodiment of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

A system, method, and software for building and searching
a compressed cube index for a database represented using
cubes are described. In the following description, for the
purposes of explanation, numerous specific details are set
forth in order to provide a thorough understanding of the
present invention. It is apparent, however, to one skilled in the
art that the present invention may be practiced without these
specific details or with an equivalent arrangement. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscuring
the present invention.

Furthermore, the operation of an embodiment of the
present invention is illustrated with respect to a particular
working example. It is to be understood, however, that the
present invention is not limited to the particular working
example or even the number of the attributes or dimensions in
the working example, but can be profitably applied to a wide
variety of input data, attributes or dimensions, and hierar-
chies.

In a database management system, data is stored in one or
more data containers, each container contains records, and
the data within each record is organized into one or more
fields. In relational database systems, the data containers are
referred to as tables, the records are referred to as rows, and
the fields are referred to as columns. In object-oriented data-
bases, the data containers are referred to as object classes, the
records are referred to as objects, and the fields are referred to
as attributes. Other database architectures may use other ter-
minology.

A record may be conceptualized as a representation of an
entity characterized by multiple attributes, such that the
record includes, for each of the attributes, values associated
with the represented entity. For example, the entity may be a
person characterized by the attributes last name, first name,
address, social security number, title within company, age,
height, and salary. Thus, a record for Mary Smith may include

10

15

20

25

30

35

40

45

50

55

60

65

10

values for each of these attributes which correspond to Mary
Smith. As another example, the entity may be a product
produced by a corporation, characterized by the attributes
region, time, and product classification, for determining
information regarding sales of the products of the corpora-
tion. For either of these examples, the attributes may be con-
ceptualized as dimensions in multidimensional space, with
the individual records conceptualized as points in the multi-
dimensional space. An attribute is not necessarily explicitly
characterized by a hierarchy, however; a hierarchy may be
implied (e.g., a top level includes all the attribute values) or
explicit (e.g., a product classification may explicitly include a
predefined hierarchy of geography for countries, sales region,
and store).

Systems that implement the present invention are not lim-
ited to any particular type of data container or database archi-
tecture. However, for the purpose of explanation, the termi-
nology and examples used herein shall be that typically
associated with relational databases. Thus, the terms “table,”
“row,” and “column” shall be used herein to refer respectively
to the data container, record, and field.

Conceptual Overview

FIG. 6 depicts 75 rows produced in FIG. 5 from the three
exemplary input rows to present six unique values. In FIG. 6
the aggregate space 600 is divided into regions where the
value is the same. Each of these regions is a single row and
yields a “compressed cube index” to indicate which other
rows each single row represents. Each row in the compressed
cube index corresponds to a coverage class, which describes
a set of tuples such that each of the dimensional values of the
tuples in the coverage class fall within a particular position in
the predetermined hierarchy of each dimension. Thus, a cov-
erage class generally corresponds to a node in the index that
describes a single row (with a single aggregate value) and also
describes which other rows have that same value.

One feature of the build process is maintenance of a con-
stant memory footprint, thus enabling pre-allocation of pages
from a buffer cache or allocation of memory that is constant
for the life time of the aggregation process. The memory
footprint is proportional to the number of input rows.

Each step of building the index has two phases. First, the
hierarchy on the outer edge of the cube is rolled up. An edge
of'the cube may be interpreted as an extreme outside portion
of the dimensional wireframe. After the edge is rolled up, if
new coverage classes were created, the hierarchy is traversed
downward in an operation referred as a “drill down” to deter-
mine if there are intermediate coverage classes and to estab-
lish a lower bound in the hierarchy with this value (e.g., the
lowest point in the hierarchy with this value). The reason this
is performed is that most aggregation occurs towards the top
of a hierarchy.

FIG. 7 illustrates exemplary steps taken to generate an
index. At step 702, a plurality of values associated with a
plurality of respective attributes characterized by a plurality
of respective hierarchies is received. The plurality of values
may, for example take the form of tuples, or rows. At step 704,
a parent entry in the index to include a plurality of bounds
associated respectively with the values and located at respec-
tive positions within the respective hierarchies is generated.
Atstep 706, a child position associated with one of the bounds
and located at a first position in one of the respective hierar-
chies is determined. The child position is strictly included
within the one of the bounds within the hierarchy. At step 708,
a child entry to include a child bound that is located at a
second position in the one of the respective hierarchies is

US 9,195,699 B2

11

generated. The child bound is strictly included within the one
of'the bounds within the one of the respective hierarchies. At
step 710, the child position is stored in association with the
parent entry and the child entry.

FIG. 8 illustrates exemplary steps taken to search for an
item in the index when a request is received, or a need is
recognized, for searching for the item by using the index. At
step 802, a value of the item in a first attribute is compared
with a first attribute lower bound associated with a first node
of'the index. At step 804, a determination is made whether the
value of the item in the first attribute is lower in the hierarchy
of the first attribute than the first attribute lower bound asso-
ciated with the first node. At step 806, a determinationis made
whether a child value of the first attribute lower bound is
included in a path from value of the item in the first attribute
to the first attribute lower bound. At step 808, the item value
in the first attribute is compared with a first attribute lower
bound value associated with a second node of the index
indicated by the first node, e.g., a child value in a child
coverage class based on an indicator of the child coverage
class which is stored with the node information in the first
node.

FIG. 9 illustrates exemplary steps taken for traversing a
body of data using the index. At step 902, a request is
received, or a need is recognized, for traversing the body of
data, or visiting all points in a cube. At step 904, an array is
initialized on each attribute or dimension for a node in the
index. At step 906, values are included in the array by pushing
up the hierarchy of an attribute from the node viewed as a
child node to a parent node of the child node. At step 908, a
cross product of the array values is generated based on that
array for each attribute or dimension in each node of the
index. When the first node of the index is processed, there is
no parent node, and thus the array is initialized using single
values.

FIG. 10 depicts an overview 1000 of traversing a cube
while computing aggregates. The vertical direction repre-
sents aggregation up the A hierarchy. The horizontal arrows
represent aggregation up the B hierarchy. The arrows jumping
from box to box represent aggregation up the C hierarchy
(e.g., as a 2D rendering of aggregation in the Z axis). Each box
represents a level intersection between the 3 hierarchies. In
relational terminology, each box represents a grouping set.

The top row of boxes illustrates aggregating up the outside
edge of the cube. The bottom row of boxes shows drilling
down from those points to detect new coverage classes in the
interior of the cube.

An exemplary aggregation 1100 of the example data set is
accomplished by starting with the 3 input rows, represented
by the values 1, 2, and 4 in the lower left hand corner of a left
most box 1102 of FIG. 11. At the bottom of FIG. 11 the input
rows are shown preceded by their values. Each of these rows
is a coverage class, since they all evolve from a different input
row. One coverage class represents one or (as is typical) more
rows. The coverage classes are held together in the com-
pressed cube index. For purposes of description of the exem-
plary process, the index structure is built up in rounds. Each
depiction of the index shows the index as it is at that point in
the processing, thus indicating the persistent (e.g., on-disk)
structure of the compressed cube dimension.

FIG. 12 depicts an exemplary in-memory data structure
1200 used to perform the aggregation. The first 4 columns
enumerate a dimension member for each dimension and a
value indicating the input coverage class. The final column is
used to denote which value was used as the source of each
row. Since these rows are input data, the initial value shown in
the final column is null.

10

15

20

25

30

35

40

45

50

55

60

65

12

For the present example, the lower bounds of the three
input classes are loaded into the processing buffer as tuples
including class number and source value. During processing
these tuples will be pushed upwards ultimately to the class’s
upper bound and then to the lower bound of the parent class.

The build process starts by stepping up the hierarchies one
attribute or dimension at a time. To do this, the initial value of
attribute or dimension A is determined, and replaced with its
parent in the hierarchy, thus pushing 1 level up the A hierar-
chy, sorting the new rows and identifying new classes. Con-
sequently, A11 becomes A21 and so on. Now the source value
is set to the attribute or dimension member from which this
started. For instance, the row A21, B31, C17 now has a source
value of A11 since that was the original value of the A column,
as shown in FIG. 13. If aggregation were going to occur (e.g.,
2 rows were added together) two matching rows with identi-
cal attribute or dimension values would result. Since none of
the rows match, no addition occurs. As shown in FIG. 13,
processing pushes 1 level up the A hierarchy, sorts the new
rows 1300 and identifies new classes. A new class is indicated
by matching rows, but at this point there are no new classes.

As discussed previously, for this example, the A hierarchy
is the most complex—both skip level and ragged. When pro-
cessing is begun, the maximum height in the hierarchy of each
dimension member is noted. If a cell is already at a higher
height (e.g., because of skip-level hierarchies) than its neigh-
bors, that cell is not moved up the hierarchy until the other
rows match the same height, thus maintaining the current
value of the row, as shown in the structure 1400 of FIG. 14.
For every value of a dimension, its depth is known. If the
current value of a cell is above the current depth, then it is
kept, otherwise its parent is added.

As shown in the structure 1500 of FIG. 15, after continued
pushing, the top of the A hierarchy is reached without having
any matching rows (i.e., they all differed in the B and C
columns). Thus, no aggregation occurred. The top of the A
hierarchy is reached with no new classes, and now the next
hierarchy is processed.

As shown the structure 1600 of in FIG. 16, the A hierarchy
has been rolled up and the accumulation rows are now at the
top level of the A hierarchy, as denoted by the presence of the
numbers in the upper left hand corner of the first box 1102.
Thus, a height 4 of the hierarchy has been reached. When this
level has been reached, there still exist the same 3 coverage
classes that existed at the beginning. Again, this indicates no
aggregation occurred while rolling up the A hierarchy. The
coverage classes are still labeled with their lower bounds and
children for that dimension (e.g., the input tuples).

Using the rows produced while rolling up the A hierarchy
(now all at the A41 cell), the B hierarchy is rolled up, as shown
in the structure 1700 of FIG. 17. Thus, the source value is now
set to values of the B dimension.

As the B hierarchy is pushed up, two of the rows match,
thus indicating that aggregation is occurring, as shown in the
structure 1800 of FIG. 18. The two rows are added together to
produce coverage class 6. FIG. 18 also depicts the com-
pressed cube index that is being created. The lower bound (the
point at which the aggregation occurs) is B31 for the B hier-
archy. This is noted by recording the children in the B hier-
archy that were used to construct this coverage class, as
shown in FIG. 18.

However, the lower bound may be at a lower level for the A
hierarchy (which is currently at the highest level of aggrega-
tion). Thus, processing will drill down the A hierarchy to
determine the lower bounds and children for that dimension.

US 9,195,699 B2

13

Since coverage class 6 has children down the B hierarchy, all
previous hierarchies are drilled down for the node to be com-
plete.

A structure 1900 of FIG. 19 depicts the creation of cover-
age class 6. Aggregates are taken from rolling up the A hier-
archy and now rolling them up the B hierarchy. In the top right
corner of the first box 1102 coverage classes 2 and 4 are
shown collapsing (aggregating) into coverage class 6.

FIG. 19 shows coverage class 6 in the compressed cube
index. The children have been filled in on the B hierarchy, and
children for this class in the A hierarchy have not yet been
determined.

Whenever a new coverage class is created, any previous
hierarchies are descended to find the lower bound (when the
aggregation occurs), as shown in a structure 2000 of F1G. 20.
In the present example, the A hierarchy is descended to find
the appropriate children of coverage class 6. There is nothing
to do in the C hierarchy because the processing is still at the
detail level there.

Drilling down the A hierarchy involves a determination of
what children to descend to. This information is not entirely
available from the definition of the hierarchy because the
example only indicates those hierarchy values that this class
represents, and drilling down involves knowledge of what
nodes each of those is associated with.

In order to determine this information each of the children
(which are both down the B hierarchy, but due to the process
they know their children down the A hierarchy as well) is
analyzed to determine how they would descend the A hierar-
chy. In this case a different A value is determined for each
child so each of these values is recorded as the A children.

Had the exemplary data set been different, there could have
been two other possible results. The first alternative would
have been that the values from the children coverage classes
were the same. In this case the value of the lower bound would
simply be lowered and drilling would be continued. Alterna-
tively, if some, but not all, of the child values had found the
same value down the A hierarchy, a new coverage class would
have been created. Thus, in order to find the children down all
previous hierarchies the values of the children down the drill
hierarchy are determined based on how the drill would be
performed for the coverage classes down the primary hierar-
chy. If all children descend to the same value the lower bound
processing would have been dropped. If some, but not all,
children descend to the same value, then additional classes
would be recursively created and recorded as the children.

A structure 2100 of FIG. 21 depicts the drill down onthe A
hierarchy, reinforcing the existence of coverage classes 2 and
4 below the level at which coverage class 6 was created.
Additionally, the child values in coverage class 6 for the A
hierarchy are now filled in. The compressed cube index node
for coverage class 6 is now complete.

The rows for coverage classes 2 and 4 are replaced with the
single row for coverage class 6, thus ensuring that the accu-
mulation region has a maximum size of the number of input
rows. Over the course of aggregation, the space occupied by
processing space will shrink, thus ensuring that the memory
utilized by the algorithm is bounded by the initial memory,
and hence is proportional to the number of input rows. As
shown in a structure 2200 of FIG. 22, the multiple input cells
in the worklist are replaced with the single cell from the new
class. As shown, the first tuple now has class #6.

Since the top of the B hierarchy has been reached, the C
hierarchy is processed, as shown in a structure 2300 of FIG.
23. The Source Value column values are reset to values in the
C dimension and pushed upward. In FIG. 23, one level in the

10

15

20

25

30

35

40

45

50

55

60

65

14

Chierarchy has been pushed up. Since the rows do not match,
aggregation has not occurred. Pushing is continued upward in
the C hierarchy.

When one more level in the C hierarchy is pushed up, the
rows match, as shown in a structure 2400 of FIG. 24, thus
signaling the creation of coverage class 7—the Top, Top, Top
node for the three dimensions of the present example. As
before, the preceding hierarchies are descended to discover
the lower bounds in those dimensions. A recursive descent is
performed to complete class 7.

A structure 2500 of FIG. 25 depicts the creation of cover-
age class 7. In the upper right hand corner of FIG. 25, cover-
age classes 1 and 6 join to make coverage class 7. The “child”
values for the A and B hierarchies are then filled in.

As shown in a structure 2600 of FIG. 26, the B hierarchy is
drilled down by constructing rows of the input children. Cov-
erage class 6 comes from the rows (i.e., along the B hierarchy)
<A41, B21, C31> (coverage class 2) and <A41, B22, C31>
(coverage class 4). These rows are produced by using the
lower bound of coverage class 7 by dropping the dimension of
the drill hierarchy according to the specification of the child
class. Coverage class 1 has the descendent row <A41, B21,
C31>. When these rows are analyzed, it is determined that one
of'the dependent rows for coverage class 6 and coverage class
1 match, thus signaling the discovery of a new coverage class
(i.e., the sum of coverage classes 2 and 1). For convenience,
this coverage class is labeled coverage class 3. The recursive
descent is continued for the A hierarchy on class 3.

A structure 2700 of FIG. 27 depicts drilling from coverage
class 7 back down the B hierarchy. Coverage classes 3 and 4
are recreated one level down the B hierarchy in this region of
the C hierarchy. Also the compressed cube index has two
coverage classes under construction, 3 and 7.

A structure 2800 of FIG. 28 depicts recursive descent of the
B hierarchy for coverage class 3 to establish the lower bounds
for that hierarchy (e.g., this could be at the top of a com-
pressed region). However, when the drill is performed, cov-
erage classes 2 and 1 are reached, indicating that B21 repre-
sents the lower bound for this coverage class, as shown in
FIG. 29.

A structure 3000 of FIG. 30 depicts drilling down the A
hierarchy from coverage class 3. The children of coverage
class 3 down the B hierarchy, classes 1 and 2, both push down
to A31 when they descend the A hierarchy. The lower bound
for coverage class 3 is thus lowered to A31 and the drilling is
continued.

One more level on A is descended for both coverage class
1 and 2, as shown in a structure 3100 of FIG. 31. The input
classes are reached, and thus the true lower bound and the
children for coverage class 3 have been determined.

A structure 3200 of FIG. 32 depicts descending the A
hierarchy for coverage class 3 and filling in the child infor-
mation of coverage class 3. As shown, the lower bound of
class 3 is now A31 instead of A41.

As shown by a structure 3300 of FIG. 33, the recursion
stack is popped and a drill down of the A hierarchy is begun
for coverage class 7. When the input classes (1 and 6) are
drilled, matching rows are determined, signaling the creation
of a new class—coverage class 3'. Coverage class 3' is the
same as coverage class 3 (i.e., it is the aggregation of the same
input rows), but detecting this redundancy is expensive in
computation resources.

A structure 3400 of FIG. 34 depicts drilling down the A
hierarchy from coverage class 7 to yield the 3' coverage class.
The descent from coverage class 7 along the A hierarchy goes
into an area above the known top of class 3 (on the C hierar-

US 9,195,699 B2

15

chy). It also shows the nearly completed compressed cube
index, for which the lower bounds and children of 3' are yet to
be filled in.

Since coverage class 3' was determined by drilling down
the A hierarchy, it is now determined if the true lower bounds
have been found. As shown in FIG. 35, the A hierarchy is
drilled down further, and the input coverage classes 1 and 2
are reached, thus indicating that the lower bound for coverage
class 3' has been determined.

As shown in a structure 3600 of FIG. 36, completing class
3' completes the original drill down the A hierarchy from
coverage class 7. The top of all hierarchies has been reached,
so the single node is used as the root of the tree.

FIG. 37 depicts the completion 3700 of drilling down the A
hierarchy from coverage class 7 to coverage class 3' to cov-
erage classes 1 and 2. The filling in of the child information of
coverage class 3' and 7 is now completed, thus indicating the
completion of the aggregation. The bottom half of FIG. 37
depicts the completed compressed cube index.

As the example shows, the index build process is not per-
fectat detecting redundancy. Although coverage classes 3 and
3" are actually the same class, they were discovered by
descents down different hierarchies and the exemplary index
build process did not coalesce them. This redundancy could
be detected, but it would be computationally more expensive
to detect it. The duplication has not caused negative perfor-
mance issues in practice, if the hierarchies are in a particular
order.

As discussed previously, given the present exemplary pro-
cess, it is cheaper computationally to accept duplicate cover-
age classes rather than scan for this possibility every time.
However, research has indicated that the order in which the
dimensions are aggregated may greatly affect the number of
these duplicate classes. In general, it is desirable to rollup
dimensions that have very few levels (e.g., 2) first and rollup
deeper hierarchies last.

FIG. 38 depicts rewriting the SQL. CUBE operation into a
dimensional form and computing it using the present exem-
plary compressed cube algorithm. A fact table 3802 with 3
key columns: S, C, and P, is input. The cube operator groups
each of the members of the columns into a single node rep-
resented as “*”. A “*” entry appears for every recombination
of'the other 2 rows. As shown in FIG. 38, the exemplary fact
table 3802 includes 3 rows. The operation “Select S, C, P,
sum(M), From fact_table Group By Cube (S, C, M);” is
performed, for a result including 22 rows 3804. Each column
in a row determines others, e.g. S1—=C2, C2—S1.

Thus: “GBY S1=GBY C2=GBY S1,C2,...="

A first step 3900 in performing a CUBE operation is to
transform the columns into dimensions, as shown in FIG. 39.
The distinct list for each column of the cube operation is
converted to a dimension. Once this is done, a “*” member for
each of these dimensions is created to hold the results of the
aggregation. Each column is converted into a dimension with
a 2 level hierarchy. Additionally, the dimension includes dis-
tinct values for each column.

The compressed cube aggregation techniques can also be
applied to implement the SQL. CUBE operator. The following
discussion illustrates a simple example.

When an exemplary 4 row input table 4002 is aggregated as
shown in FIG. 40, 8 coverage classes 4006 are determined for
the resulting aggregated cube. This corresponds with 23 rows
4004 that would have been produced by the conventional
SQL CUBE operation. Fortunately, users can still query the
entire compressed cube and all of the desired rows are pro-
duced.

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 41 depicts an exemplary data structure 4100 used for
the leaf nodes to store coverage class information for the
example shown in FIG. 37.

FIG. 42 depicts the beginning of processing involved for a
point query 4200, by using the coverage class index (i.e.,
compressed cube index) to request specific cells. In the
example of FIG. 42, it is desired to find the cell <A31, B21,
C16>. All probes into the compressed cube index are per-
formed in the reverse order of aggregation. Since the ordering
of rolling up in creation of the compressed cube index was
first the A dimension, then B, then C, probes of the coverage
classes will be performed in the order C, B, A, (i.e., the tree is
structured so that the hierarchies are drilled down in a specific
order [C, B, A]). Since all of the hierarchies have a “top” node,
coverage class 7 represents the top of the aggregation.

As shown in FIG. 43, coverage class 7 is analyzed and it is
determined 4300 that the children of C31 are C23, in coverage
class 6, and C24, in coverage class 1. The query begins at the
top of the tree, drilling on the C hierarchy. As shown, C16 is
atalower depth than C31 so it is pushed up to the lower bound
and the matching child is used.

As shown in FIG. 44, the C hierarchy is used to trace the
path from C16 (the desired cell) to C31. This path moves
through C23, so it is determined 4400 to descend into cover-
age class 6. Since a match is found on C23 it is determined to
go to class 6 and continue with the C hierarchy.

When coverage class 6 is reached 4500, it is determined
that the lower bound is C16, as shown in FIG. 45, and the
correct coverage class has been found, so that the B hierarchy
is drilled next.

As shown in FIG. 46, using the B hierarchy, the drill path
from B21 (the target) to B31 (the lower bounds of coverage
class 6) is derived. Since B21 is lower than B31, it is deter-
mined 4600 that the B hierarchy is to be drilled down. When
the children of coverage class 6 are checked, it is determined
that B21 (in coverage class 2) is a direct child of coverage
class 6, thus indicating that coverage class 2 is to be drilled.

As shown in FIG. 47, the lower bound of coverage class 2
is checked and it is determined 4700 that it is lower than B21
(the target), thus indicating that the correct coverage class for
the B hierarchy has been reached. The A hierarchy is checked
next. The A hierarchy is used to derive the path from A13 (the
lower bound of coverage class 2) and A31 (the target). The
target is found in this path, indicating that coverage class 2
contains the desired cells. Now the query returns the value
associated with coverage class 2.

If it had been determined that the target cell was not in the
drill path (e.g., it was B11), then it would have been con-
cluded that the cell did not exist in the compressed cube and
a null value would have been returned.

The lower bound pushes up to the query value so that the
next hierarchy (A), which also pushes up to the query value,
is processed, thus concluding the query: A31 B21 C16 is
contained in class 2.

The exemplary system and process discussed next yield
output as if the user did a full table scan of a fully aggregated
table. In this process, the compressed cube index is traversed,
going from coverage class to coverage class, returning all the
rows that each coverage class represents. An exemplary rea-
son for doing such a traversal is that users may wish to query
the uncompressed result of aggregation. The traversal is done
by traversing the compressed cube index using a depth first
search algorithm. For each dimension there exists an array of
dimension positions corresponding to the span represented by
the current coverage class. When the traversal steps down a
hierarchy the array on that dimension is replaced with the
child value stored in the parent class (an upper bound).

US 9,195,699 B2

17

Since upper bounds are not stored in the coverage classes
for this example, the drill path into the coverage class is used
to establish what is the upper bound for that path. To ensure
that all of the possible drill paths into a coverage class are
covered, a standard depth first search on the compressed cube
index is used.

The traversal starts with the initial lower bounds of the top
coverage class 4800, as shown in FIG. 48. An in memory
array is created for each dimension of the cube. Initially, each
array has only one value, the starting position of the top most
coverage class. Then, as the traversal steps down into each
coverage class, the array is expanded to include the drill path
between the lower bound of that coverage class and the point
atwhich the drilling entered the coverage class. The Cartesian
product of these arrays represents the rows, represented by
that particular coverage class, for that particular drill path.

For the example depicted in FIG. 48, like the point query,
the traversal starts at the root of the tree (e.g., coverage class
7). An array is initialized on each dimension starting with the
lower bound of the node and pushing up to the top of the
hierarchies. Since the lower bound is at the top of all hierar-
chies each array begins one element wide.

As shown, the traversal starts at the root of the compressed
cube index, i.e., coverage class 7 for this example. Here, the
dimension arrays are initialized to the lower bounds of cov-
erage class 7. Thus, each array starts with a single element.

Using the dimension arrays, output rows are produced for
this class, as shown in FIG. 49, by performing a cross product
4900. The Cartesian product of a single element array is a
single row.

Having produced all the rows for this class, each of its
children in turn are drilled down 5000, replacing the array on
that dimension with the child value, as shown in FIG. 50.

A traversal of the compressed cube index is begun 5100, as
shown in FI1G. 51. One dimension at a time, the child coverage
classes are entered. By replacing the current value in the array
with the child value, the upper bound in the child class is
established for this drill path.

Each hierarchy array is expanded by pushing up from the
lower bound until the upper bound supplied by the parent is
reached. This processing is performed for hierarchies that are
not ‘more significant’ than the drill hierarchy that was gone
down to reach this point.

As this coverage class was entered, the arrays held the
value <A41, B31, C24>, the upper bound for this drill path.
Each of these elements is compared to the corresponding
elements in the coverage class’s lower bound. Then the
dimension arrays are populated with all of the values between
the lower and upper bounds.

This expansion is done only for the hierarchy which is
being drilled on (e.g., C in this case) and its predecessors.
Since C is being drilled on, the expansion is done for all 3
dimensions. If this coverage class (1) had been entered by
drilling on the B hierarchy, it would only be done for the B and
A hierarchies. This rule serves to prevent the production of
duplicate rows. Once this is done, the Cartesian product of
these arrays 5200 is the list of rows produced by this coverage
class for this drill path, as shown in FIG. 52.

The depth first search would continue, but this node (for
coverage class 1) has no children, so processing returns back
up to the parent. FIG. 52 depicts the Cartesian product of the
dimension arrays.

Having stepped down the first child in the C hierarchy, the
traversal proceeds 5300 to the next child, as depicted in FIG.
53. The traversal proceeds with the depth first search from
coverage class 7 (because coverage class 1 had no children),
as shown in FIG. 54. This time the value in the C array is set

25

30

35

40

45

18

to C23, the value of the upper bound for coverage class 6. The
traversal 5400 thus proceeds as: (1) fill in arrays by pushing
up from lower bound; (2) produce cross product output; and
(3) begin drilling down children.

Now the process that was used in coverage class 1 is
repeated. Interestingly for this example, the lower bound for
coverage class 6 has the same values as coverage class 7, and
thus only the dimensional array for hierarchy C is expanded.
Once the two rows from the array cross product are produced,
the arrays are left as they are and then the children classes are
drilled.

As shown in FIG. 55, the children are drilled down 5500
starting with the most significant hierarchy greater than or
equal to the hierarchy that was drilled down to reach this
point. Since the traversal is currently at the bottom of the C
hierarchy as shown in FIG. 56, and there are still children of
this coverage class, the preceding hierarchy is drilled 5600, as
shown in FIG. 56, in this case, hierarchy B. Leaving the array
for the C hierarchy as it is (with 2 elements) the value in the B
array is replaced with that of its child, B22. Thus, when
coverage class 4 is entered, the traversal arrives with two
upper bounds (i.e., <A41, B22, C16>and <A41, B22, C23>).
The traversal thus proceeds as: (1) push up the bounds; (2)
produce output rows; and (3) return to parent.

Again, the method is repeated. First the lower bound of
coverage class 4 (A22, B14, C16) is compared with the two
upper bounds that were created before drilling (<A41, B22,
C16> and <A41, B22, C23>). Then the B and A hierarchies
are used to expand the arrays to fill in all of the elements in
between the drill path. Once the arrays have been expanded,
the output rows are produced by taking the cross product of
the arrays. Since this is an input coverage class, it has no
children and the traversal returns to the parent.

As shown in FIG. 57, the traversal is back 5700 at coverage
class 6. This time the value in the B array is replaced with B21
and coverage class 2 is drilled, i.e., the other child down the B
hierarchy. The traversal thus proceeds as: (1) push up the
bounds; (2) produce output rows; and (3) return to parent.

The operation 5800 for coverage class 2 is similar to the
one for coverage class 4, as shown in FIG. 58. The B and A
arrays are expanded based on the drill path between the lower
and upper bounds, the cross product of the arrays is calculated
to produce output rows, and because this too is an input
coverage class, the traversal returns to the parent coverage
class.

Now the traversal has covered the B hierarchies and must
perform the same operation 5900 by drilling down the A
hierarchy, as shown in FIG. 59. The traversal thus proceeds
as: (1) push up the bounds; (2) produce output rows; and (3)
return to parent. B is not pushed up, because B is more
significant than the current hierarchy (A).

As shown in FIG. 60, this operation 6000 will be essen-
tially the same as those previously discussed with one differ-
ence. Because the A hierarchy is being drilled down, the array
is not expanded between the lower and upper bounds ofthe B
hierarchy, only the A hierarchy. The lower bound itself, and
the corresponding rows between B14 and B31 will be pro-
duced by another drill path. Because A22 is the lower bound
for coverage class 4, none of the arrays are actually expanded.
The two rows produced this time are different from those
produced in the previous visit to coverage class 4.

To complete the scan for this drill path into coverage class
6, the first child of the A hierarchy, A31, is drilled down 6100
as showninFIG. 61. The traversal proceeds as: (1) pushup the
bounds; (2) produce output rows; and (3) return to parent.
This visit 6200 to coverage class 2, as shown in FIG. 62 is
similar to the last one. The A array is expanded with the nodes

US 9,195,699 B2

19

between the lower and upper bounds on the A dimension and
then the cross product of the rows is produced. After com-
pleting this, the traversal returns 6300 to the parent, as shown
in FIG. 63.

Now all of the children in class 6 for this drill path have
been traversed, so the traversal returns 6400 to the parent
node, coverage class 7, as shown in FIG. 64. The traversal is
complete for the C hierarchy, and so continues on to the B
hierarchy.

As shown in FIG. 65, now that the C hierarchy for coverage
class 7 is finished, the traversal drills down the B hierarchy
6500 into coverage class 4. The traversal proceeds as: (1) push
up the bounds; (2) produce output rows; and (3) return to
parent.

C is not pushed up, because C is more significant than the
current hierarchy (B). This is the third time the traversal has
visited coverage class 4. However, the two previous trips were
down the C hierarchy. This time, the traversal is drilling down
the B hierarchy which means the array for the C dimension is
not expanded. The operations at this point are similar to those
previously discussed. None of these rows 6600 have been
previously produced, as shown in FIG. 66.

The traversal next drills down the B hierarchy 6700 to
coverage class 3, as shown in FIG. 67. The traversal proceeds
by pushing up the bounds, producing output rows, recursing
down children, and returning to the parent. The operation
continues as previously discussed. After expanding the arrays
appropriately, the traversal produces the output rows, recur-
sively descends to the child coverage classes producing rows,
and eventually returns to the parent. Thus, the traversal con-
tinues until the entire tree is scanned.

FIG. 68 depicts the list 6800 of the 75 rows produced by the
traversal of the compressed cube index. In an analytical con-
text a user typically works with a symmetric subset of data
defined by status on each of the base dimensions (status on a
dimension is a subset of dimension values). For example, a
typical range query would be similar in form to:

WHERE a in (‘A11°, ‘A21°) and b in (‘B31’) and ¢ in

(‘C11°, °C12’, *C13°, ‘/C14’)

A partial range scan may be performed similarly to a full
cube scan with the following changes:

When the Cartesian output of a coverage class is created
the base dimensions are pruned to the values actually repre-
sented in the range. So if processing would normally output
cells for [A13, A21, A31], but only A21 is within the query
range, then the Cartesian output is pruned down to just A21.

When descending the children of a coverage class, the scan
does not descend if a hierarchy that has just been finished
descending has arange that has been completely pruned. So if
the Chierarchy has been scanned down until the correct lower
bound is found and now the B hierarchy would be drilled
down, but the Cartesian product on C had no values within the
query range, then no children down B or A will be in the query
range either so those sub-trees are not descended.

It is not uncommon within an OLAP space for multiple
hierarchies to exist on a single attribute or dimension, for
example time might have separate hierarchies for fiscal and
calendar years. These hierarchies may be modeled in an
OLAP engine as multidimensional hierarchies. The com-
pressed cube may also deal with this situation. An exemplary
first step is to validate that the hierarchies are acyclic, which
may be accomplished by constructing a Directed Acyclic
Graph (DAG) and checking for cycles. Second, any inconsis-
tencies within the hierarchies may be resolved. For example,
if a calendar hierarchy defines Q1 as the aggregation of JAN,
FEB, and MAR, while a fiscal hierarchy defines Q1 as the
aggregation of MAR, APR, and MAY, then the aggregation of

25

30

40

45

20

Q1 is inconsistent between the hierarchies. This is resolved
by ordering the hierarchies with later hierarchies dominating
over earlier hierarchies.

This causes a number of small variations in the aggregation
and query algorithms. When processing is in the ROLLUP
phase it is now possible for a given dimension position to have
multiple parents, and processing pushes the dimension value
up to all of them. This will cause multiple entries to exist for
a given coverage class at the next level.

Multiple hierarchies cause multiple top nodes on a dimen-
sion, which in turn yields multiple top nodes in the com-
pressed cube tree. The upper bounds of all the topmost nodes
are stored within a b-tree so that processing can locate the
correct node to drill from during queries. When querying the
correct node to drill from is selected by pushing up the “first’
hierarchy at every level. Once the ultimate upper bound of the
query point has been found this bound is located in the top-
node b-tree. If the bound is not found then NULL is returned,
otherwise that node is used as the root of the tree.

When drilling, drill down is only done if the parent being
drilled on was the ‘first’ parent of a particular child. This
ensures that there is a unique path to any dimension value.

The compressed cube technology can be implemented as a
new dimension type. This dimension is created over a list of
base hierarchies rather than a list of base dimensions. It is
possible to access the compressed cube dimension both by
point access, and by range access. However, the order that
rows are returned from a range scan may be in an effectively
random order.

Although the previous discussion focuses on implement-
ing compressed cubes as purely multi-dimensional database
structures, the algorithms may be implemented in either a
purely relational or a hybrid multi-dimensional or relational
structure. An approach called compressed cube index
involves creating multiple database objects that include simi-
lar information to the compressed cube dimension. The tables
can be implemented by standard database table, a tree-struc-
tured index, or by an index-only table.

One database object has the lower bound of each class. The
primary key is the class ID, and the data is the lower bounds,
as well as any measures. Another database object has the
children of each class down each hierarchy. (This can be
implemented as N database objects, one of each dimension).
The primary key is the class 1D, dimension to descend, and
child dimension value in that dimension. The payload is the
node ID of the child.

The build alternates between phases of calculating all
classes at a level, and inserting the newly generated classes
into the database objects. In order to calculate the new classes
at level N, processing may be able to query the partially built
database objects that have all classes at level N-1. This dis-
courages index creation that relies on sorting all the input
rows as part of the index build. Instead, an array insert of all
the new values for the new level is performed. The rows will
be inserted in order. Since coverage class ID will be mono-
tonically increasing, as if clustering is begun for the pure
analytical case, a mechanism is provided to not cluster during
builds of the compressed cube index.

During both the build and query phases, processing is
enhanced by having quick access to the ancestors of each
dimension value. A good way is the analytical workspace
technique, which does it in a very small constant time by
having an array that is paged but usually in cache. One
approach is to develop a hybrid implementation that uses
multi-dimensional data structures to enable fast parent-child
lookups. Alternatively, a purely relational implementation
could be created by having a new database object per dimen-

US 9,195,699 B2

21

sion to include parent information. The former approach may
be faster, but it may utilize more infrastructure than ideal for
a build of the compressed cube index.

If clustering is begun for the pure analytical workspace
case, a mechanism to not cluster during builds of the com-
pressed cube index may be provided.

This section has described the compressed cube storage in
terms of classes and lower bounds as they were stored directly
ondisk. In an alternative embodiment as shown in FIG. 69 the
compressed cube access structures are stored within a rela-
tional database. This approach uses two indexed tables (or
index organized tables) 6902 and 6904 to store information
regarding coverage classes. The first table 6902 includes data
for each class. Each row represents a single class, and
includes its lower bound on each dimension, the node 1D
(Class ID), and the value(s) of the measure(s) (not shown).
The second table 6904 contains information regarding the
children of each class, including a plurality of rows for each
class, each row representing one child that can be searched
down a particular dimension. The table 6904 contains a col-
umn for class ID, a column to indicate which dimension/
hierarchy this is a child of, and a column to indicate what the
child value is. The two tables 6902, 6904 enable efficient
access to each coverage class via the ID of the coverage class.
Additionally, the tables 6902, 6904 enable an efficient drill
down through the hierarchies using the second table. As an
alternative embodiment, the second table can be split into
multiple tables, one per dimension. An indicator of the top
node 6906 enables a query request to initiate a search at the
appropriate node (e.g., node 7 for this example).

Hardware Overview

FIG. 70 illustrates a computer system 7000 upon which an
embodiment according to the present invention can be imple-
mented. The computer system 7000 includes a bus 7001 or
other communication mechanism for communicating infor-
mation and a processor 7003 coupled to the bus 7001 for
processing information. The computer system 7000 also
includes main memory 7005, such as a random access
memory (RAM) or other dynamic storage device, coupled to
the bus 7001 for storing information and instructions to be
executed by the processor 7003. Main memory 7005 can also
be used for storing temporary variables or other intermediate
information during execution of instructions by the processor
7003. The computer system 7000 may further include a read
only memory (ROM) 7007 or other static storage device
coupled to the bus 7001 for storing static information and
instructions for the processor 7003. A storage device 7009,
such as a magnetic disk or optical disk, is coupled to the bus
7001 for persistently storing information and instructions.

The computer system 7000 may be coupled via the bus
7001 to a display 7011, such as a cathode ray tube (CRT),
liquid crystal display, active matrix display, or plasma dis-
play, for displaying information to a computer user. An input
device 7013, such as a keyboard including alphanumeric and
other keys, is coupled to the bus 7001 for communicating
information and command selections to the processor 7003.
Another type of user input device is a cursor control 7015,
such as a mouse, a trackball, or cursor direction keys, for
communicating direction information and command selec-
tions to the processor 7003 and for controlling cursor move-
ment on the display 7011.

According to one embodiment of the invention, a com-
pressed cube index is provided by the computer system 7000
in response to the processor 7003 executing an arrangement
ofinstructions contained in main memory 7005. Such instruc-

10

15

20

25

30

35

40

45

50

55

60

65

22

tions can be read into main memory 7005 from another com-
puter-readable medium, such as the storage device 7009.
Execution of the arrangement of instructions contained in
main memory 7005 causes the processor 7003 to perform the
process steps described herein. One or more processors in a
multi-processing arrangement may also be employed to
execute the instructions contained in main memory 7005. In
alternative embodiments, hard-wired circuitry may beused in
place of or in combination with software instructions to
implement the embodiment of the present invention. In
another example, reconfigurable hardware such as Field Pro-
grammable Gate Arrays (FPGAs) can be used, in which the
functionality and connection topology of its logic gates are
customizable at run-time, typically by programming memory
look up tables. Thus, embodiments of the present invention
are not limited to any specific combination of hardware cir-
cuitry and software.

The computer system 7000 also includes a communication
interface 7017 coupled to bus 7001. The communication
interface 7017 provides a two-way data communication cou-
pling to a network link 7019 connected to a local network
7021. For example, the communication interface 7017 may
be a digital subscriber line (DSL) card or modem, an inte-
grated services digital network (ISDN) card, a cable modem,
atelephone modem, or any other communication interface to
provide a data communication connection to a corresponding
type of communication line. As another example, communi-
cation interface 7017 may be a local area network (LAN) card
(e.g. for Ethernet™ or an Asynchronous Transfer Model
(ATM) network) to provide a data communication connection
to a compatible LAN. Wireless links can also be imple-
mented. In any such implementation, communication inter-
face 7017 sends and receives electrical, electromagnetic, or
optical signals that carry digital data streams representing
various types of information. Further, the communication
interface 7017 can include peripheral interface devices, such
as a Universal Serial Bus (USB) interface, a PCMCIA (Per-
sonal Computer Memory Card International Association)
interface, etc. Although a single communication interface
7017 is depicted in FIG. 70, multiple communication inter-
faces can also be employed.

The network link 7019 typically provides data communi-
cation through one or more networks to other data devices.
For example, the network link 7019 may provide a connection
through local network 7021 to a host computer 7023, which
has connectivity to a network 7025 (e.g. a wide area network
(WAN) or the global packet data communication network
now commonly referred to as the “Internet”) or to data equip-
ment operated by a service provider. The local network 7021
and the network 7025 both use electrical, electromagnetic, or
optical signals to convey information and instructions. The
signals through the various networks and the signals on the
network link 7019 and through the communication interface
7017, which communicate digital data with the computer
system 7000, are exemplary forms of carrier waves bearing
the information and instructions.

The computer system 7000 can send messages and receive
data, including program code, through the network(s), the
network link 7019, and the communication interface 7017. In
the Internet example, a server (not shown) might transmit
requested code belonging to an application program for
implementing an embodiment of the present invention
through the network 7025, the local network 7021 and the
communication interface 7017. The processor 7003 may
execute the transmitted code while being received and/or
store the code in the storage device 7009, or other non-volatile

US 9,195,699 B2

23

storage for later execution. In this manner, the computer
system 7000 may obtain application code in the form of a
carrier wave.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to the processor 7005 for execution. Such a medium may
take many forms, including but not limited to non-volatile
media, volatile media, and transmission media. Non-volatile
media include, for example, optical or magnetic disks, such as
the storage device 7009. Volatile media include dynamic
memory, such as main memory 7005. Transmission media
include coaxial cables, copper wire and fiber optics, including
the wires that comprise the bus 7001. Transmission media can
also take the form of acoustic, optical, or electromagnetic
waves, such as those generated during radio frequency (RF)
and infrared (IR) data communications. Common forms of
computer-readable media include, for example, a floppy disk,
a flexible disk, hard disk, magnetic tape, any other magnetic
medium, a CD-ROM, CDRW, DVD, any other optical
medium, punch cards, paper tape, optical mark sheets, any
other physical medium with patterns of holes or other opti-
cally recognizable indicia, a RAM, a PROM, and EPROM, a
FLASH-EPROM, any other memory chip or cartridge, a car-
rier wave, or any other medium from which a computer can
read.

Various forms of computer-readable media may be
involved in providing instructions to a processor for execu-
tion. For example, the instructions for carrying out at least
part of the present invention may initially be borne on a
magnetic disk of a remote computer. In such a scenario, the
remote computer loads the instructions into main memory
and sends the instructions over a telephone line using a
modem. A modem of a local computer system receives the
data on the telephone line and uses an infrared transmitter to
convert the data to an infrared signal and transmit the infrared
signal to a portable computing device, such as a personal
digital assistant (PDA) or a laptop. An infrared detector on the
portable computing device receives the information and
instructions borne by the infrared signal and places the data
on a bus. The bus conveys the data to main memory, from
which a processor retrieves and executes the instructions. The
instructions received by main memory can optionally be
stored on storage device either before or after execution by a
processor.

While the present invention has been described in connec-
tion with a number of embodiments and implementations, the
present invention is not so limited but covers various obvious
modifications and equivalent arrangements, which fall within
the purview of the appended claims.

What is claimed is:

1. A method of generating an index for a body of data, said
method comprising:

receiving a plurality of values associated with a plurality of

respective attributes characterized by a plurality of
respective hierarchies;

generating entries in the index, the entries including a

parent entry having lower bounds associated respec-
tively with the values, each lower bound of said lower
bounds representing a lowest point in a hierarchy having
a particular value at which aggregation occurs, which is
indicated by a plurality of matching rows with identical
attribute or dimension values, and located at respective
positions within the respective hierarchies;
determining child positions, wherein one of the child posi-
tions is associated with one of the lower bounds of the
parent entry and is located at a first position in one of the
respective hierarchies, and the one of the child positions

10

20

25

30

35

40

45

50

55

60

65

24

is strictly included within the one of the lower bounds of
the parent entry within the one of the respective hierar-
chies;

generating child entries based on the parent entry, wherein

one of the child entries includes a child lower bound that
is located at a second position in one of the respective
hierarchies and the child lower bound is strictly included
within the one of the lower bounds within said one of the
respective hierarchies; and

storing the one ofthe child positions in association with the

parent entry and the one of the child entries.

2. The method according to claim 1, wherein each of the
child entries includes a respective child lower bound of the
child lower bounds that is located at a respective second
position and the respective child lower bound is strictly
included within a corresponding one of the lower bounds.

3. The method according to claim 2, further comprising:

storing each of the child positions in association with the

parent entry and the respective one of the child lower
bounds.

4. The method according to claim 1, wherein the parent
entry of the index represents a first coverage class and one of
the child entries represents a second coverage class.

5. The method according to claim 1, wherein the one of the
child positions indicates a position in the one of the respective
hierarchies thatis located in a level in the one of the respective
hierarchies that is adjacent to a level of location of the asso-
ciated one of the lower bounds of the parent entry.

6. The method according to claim 1, wherein the generating
the entries includes pushing up at least one of the respective
hierarchies.

7. The method according to claim 6, wherein the determin-
ing the child positions includes determining the child posi-
tions based on said pushing up the at least one of the respec-
tive hierarchies.

8. The method according to claim 6, wherein the determin-
ing the child positions includes drilling down at least one of
the respective hierarchies.

9. The method according to claim 8, wherein:

the drilling down is performed in an attribute drill down

ordering on the respective attributes that is a reversal of
an attribute pushup ordering of the respective attributes
of a previously pushed up attribute, and

the drilling down is performed in a hierarchy drill down

ordering that is a reversal of a hierarchy pushup ordering
of the respective hierarchies utilized when pushing up
the respective hierarchies.

10. The method according to claim 1, wherein the gener-
ating the child entries includes processing the associated at
least one of the lower bounds and a plurality of child values,
each located in a descendant level to the associated at least
one of the lower bounds within the one of the respective
hierarchies.

11. The method according to claim 1, wherein the deter-
mining the child positions includes processing the associated
one of the lower bounds and a plurality of child values, each
located in a descendant level to the associated one of the lower
bounds within the one of the respective hierarchies.

12. The method according to claim 11, further comprising:

determining whether the child positions associated with a

parent lower bound match; and

when the child positions associated with the parent
lower bound match, then replacing the parent lower
bound with a value of the child positions associated
with the parent lower bound, wherein the lower
bounds includes the parent lower bound included in
one of the parent entries.

US 9,195,699 B2

25

13. The method according to claim 1, wherein said storing
the one of the child positions includes storing a supplemental
entry with the one of the child positions, a first indicator of the
parent entry, and a second indicator of the one of the child
entries.

14. The method according to claim 1, wherein one of the
respective attributes includes a dimension of a multidimen-
sional database, a column of a relational database table, or a
field of a record, or said one of the respective hierarchies
includes a predefined hierarchy or an implicit hierarchy.

15. A non-transitory computer-readable storage medium
bearing an index for a body of data defined by attributes, said
attributes characterized by respective hierarchies, said index
comprising:

a first indicator of a parent coverage class, wherein the
parent coverage class specifies parent lower bounds,
each of the parent lower bounds located in one of the
respective hierarchies characterizing the attributes and
representing a lowest point in the one of the respective
hierarchies having a particular value at which aggrega-
tion occurs, which is indicated by a plurality of matching
rows with identical attribute or dimension values;

a child position within one of the respective hierarchies for
a corresponding one of the attributes, wherein the child
position is strictly included in one of the parent lower
bounds specified for the corresponding one of the
attributes; and

a second indicator of a child coverage class, wherein the
child coverage class specifies child lower bounds, each
of'the child lower bounds located in one of the respective
hierarchies characterizing the attributes.

16. The computer-readable storage medium according to
claim 15, wherein the index further comprises the first indi-
cator of the parent coverage class in association with the
parent lower bounds.

17. The computer-readable storage medium according to
claim 16, wherein the index further comprises a measure
associated with the parent coverage class.

18. The computer-readable storage medium according to
claim 16, wherein:

a first instance of the first indicator, the child position, and

the second indicator is stored in a first file structure, and

a second instance of the first indicator and the parent lower
bounds is stored in a second file structure other than the
first file structure.

19. The computer-readable storage medium according to
claim 18, wherein the first file structure includes one of a
database table, a tree-structured index, or an index-only table.

20. The computer-readable storage medium according to
claim 18, wherein the first file structure includes a plurality of
separate file structures, each of the separate file structures
corresponding to one of the attributes.

21. The computer-readable storage medium according to
claim 15, wherein one of the child lower bounds in the child
coverage class is included within the child position within the
one of the respective hierarchies.

22. The computer-readable storage medium according to
claim 15, wherein one of the attributes includes a dimension
of a multidimensional database, a column of a relational
database table, or a field of a record, and wherein one of the
respective hierarchies includes a predefined hierarchy or an
implicit hierarchy.

23. A method of searching for an item using an index for a
body of data defined by a plurality of attributes, said attributes
characterized by respective hierarchies, the method imple-
mented in a computer system comprising a processor, a

10

15

20

25

30

35

40

45

50

55

60

65

26

memory, and computer program instructions for performing
said method, said method comprising:

comparing a value of the item in a first attribute with a first

attribute lower bound value associated with a first node
of the index, the first attribute lower bound representing
a lowest point in a hierarchy having the value at which
aggregation occurs, which is indicated by a plurality of
matching rows with identical attribute or dimension val-
ues; and

when the value of the item in the first attribute is lower in

the hierarchy of the first attribute than the first attribute
lower bound value associated with the first node of the
index, performing:

determining whether a child value of the first attribute

lower bound value associated with the first node of the
index is included in a path from the value of the item in
the first attribute to the first attribute lower bound value
associated with the first node of the index based on the
hierarchy of the first attribute, and

when the child value is included in the path, comparing the

value of the item in the first attribute with a first attribute
lower bound value associated with a second node of the
index, based on an indicator of a coverage class associ-
ated with the child value included in the first node of the
index.

24. The method according to claim 23, further comprising:

ifthe value of the item in the first attribute is at least as high

in the hierarchy of the first attribute as the first attribute
lower bound value associated with the second node of
the index, performing:

comparing the value of the item in a second attribute with

a second attribute lower bound value associated with the
second node of the index.

25. The method according to claim 24, wherein an ordering
of the first attribute and the second attribute is determined as
areversal of an ordering of the respective hierarchies utilized
in generating the index.

26. The method according to claim 24, further comprising,
after said comparing the value of the item in the second
attribute with the second attribute lower bound value associ-
ated with the second node of the index,

when the value of the item in the second attribute is a value

other than values included in a path in the hierarchy of
the second attribute as traversed by a drill path, returning
a null value.

27. The method according to claim 23, wherein one of the
attributes includes a dimension of a multidimensional data-
base, a column of a relational database table, or a field of a
record, and wherein one of the respective hierarchies includes
a predefined hierarchy or an implicit hierarchy.

28. A method of traversing a body of data defined by a
plurality of attributes, said plurality of attributes character-
ized by respective hierarchies, using an index, comprising:

initializing an array on each of the plurality of attributes

based on a lower bound value of each attribute which is
associated with a child node of a plurality of nodes
included in the index, each lower bound of said lower
bounds representing a lowest point in a hierarchy having
a particular value at which aggregation occurs, which is
indicated by a plurality of matching rows with identical
attribute or dimension values, and a path from each
lower bound of said lower bounds value of the child node
to a value of a parent node

lower bound value in each of the respective hierarchies,

wherein the child node is determined by accessing a
child coverage class indicator associated with the parent
node; and

US 9,195,699 B2

27

generating a cross product of rows based on the array on

each one of the plurality of attributes.

29. The method according to claim 28, wherein one of the
plurality of attributes includes a dimension of a multidimen-
sional database, a column of a relational database table, or a
field of arecord, and wherein one of the respective hierarchies
includes a predefined hierarchy or an implicit hierarchy.

30. The method according to claim 28, further comprising:

before initializing based on a lower bound value and a path

from each lower bound of said lower bounds value of the
child node to the value of the parent node lower bound
value, performing:

initializing an array on each one of the plurality of

attributes based on a lower bound value of each attribute
for a start node of the index.

31. The method according to claim 28, further comprising
drilling down based on each child coverage class indicator
associated with the child node.

32. The method according to claim 31, wherein said drill-
ing down is performed in an order that is determined as a
reversal of an ordering of the respective hierarchies utilized in
generating the index.

33. The method according to claim 28, further comprising:

receiving a set of query values associated with one of the

attributes, and wherein said generating the cross product
further comprises generating the cross product of rows
based on the array on each one of the plurality of
attributes and the set of query values.

34. A non-transitory computer-readable storage medium
storing sequences of instructions for generating an index for
a body of data, wherein the sequences of instructions, which
when executed by one or more processors, cause:

receiving a plurality of values associated with a plurality of

respective attributes characterized by a plurality of
respective hierarchies;
generating entries in the index, the entries including a
parent entry having lower bounds associated respec-
tively with the values, each lower bound of said lower
bounds representing a lowest point in a hierarchy having
a particular value at which aggregation occurs, which is
indicated by a plurality of matching rows with identical
attribute or dimension values, and located at respective
positions within the respective hierarchies;

determining child positions, wherein one of the child posi-
tions is associated with one of the lower bounds of the
parent entry and is located at a first position in one of the
respective hierarchies, and the one of the child positions
is strictly included within the one of the lower bounds of
the parent entry within the one of the respective hierar-
chies;

generating child entries based on the parent entry, wherein

one of the child entries includes a child lower bound that
is located at a second position in one of the respective
hierarchies and the child lower bound is strictly included
within the one of the lower bounds within said one of the
respective hierarchies; and

storing the one of the child positions in association with the

parent entry and the one of the child entries.

35. The non-transitory computer-readable storage medium
according to claim 34, wherein each of the child entries
includes a respective child lower bound of the child lower
bounds that is located at a respective second position and the
respective child lower bound is strictly included within a
corresponding one of the lower bounds.

30

40

45

60

65

28

36. The non-transitory computer-readable storage medium
according to claim 35, wherein the sequences of instructions
include instructions, that when executed by one or more pro-
cessors, cause:

storing each of the child positions in association with the

parent entry and the respective one of the child lower
bounds.

37. The non-transitory computer-readable storage medium
according to claim 34, wherein the parent entry of the index
represents a first coverage class and one of the child entries
represents a second coverage class.

38. The non-transitory computer-readable storage medium
according to claim 34, wherein the one of the child positions
indicates a position in the one of the respective hierarchies
that is located in a level in the one of the respective hierarchies
that is adjacent to a level of location of the associated one of
the lower bounds of the parent entry.

39. The non-transitory computer-readable storage medium
according to claim 34, wherein the generating the entries
includes pushing up at least one of the respective hierarchies.

40. The non-transitory computer-readable storage medium
according to claim 39, wherein the determining the child
positions includes drilling down at least one of the respective
hierarchies.

41. The non-transitory computer-readable storage medium
according to claim 40, wherein the sequences of instructions
include instructions, that when executed by one or more pro-
cessors, cause:

the drilling down to be preformed in an attribute drill down

ordering on the respective attributes that is a reversal of
an attribute pushup ordering on the respective attributes
of a previously pushed up attribute, and

the drilling down to be performed in a hierarchy drill down

ordering that is a reversal of a hierarchy pushup ordering
of the respective hierarchies utilized when pushing up
the respective hierarchies.

42. The non-transitory computer-readable storage medium
according to claim 35, wherein the generating the child
entries includes processing the associated at least one of the
lower bounds and a plurality of child values, each located in
a descendant level to the associated at least one of the lower
bounds within the one of the respective hierarchies.

43. The non-transitory computer-readable storage medium
according to claim 42, wherein the determining the child
positions includes determining the child positions based on
said pushing up the at least one of the respective hierarchies.

44. The non-transitory computer-readable storage medium
according to claim 34, wherein the determining the child
positions includes processing the associated one of the lower
bounds and a plurality of child values, each located in a
descendent level to the associated one of the lower bounds
within the one of the respective hierarchies.

45. The non-transitory computer-readable storage medium
according to claim 44, wherein the sequences of instructions
include instructions, that when executed by one or more pro-
cessors, cause:

determining whether the child positions associated with a

parent lower bound match; and

when the child positions associated with the parent lower

bound match, then replacing the parent lower bound
with a value of the child positions associated with the
parent lower bound, wherein the lower bounds includes
the parent lower bound included in one of the parent
entries.

46. The non-transitory computer-readable storage medium
according to claim 34, wherein said storing the one of the
child positions includes storing a supplemental entry with the

US 9,195,699 B2

29

one of the child positions, a first indicator of the parent entry,
and a second indicator of the one of the child entries.

47. The non-transitory computer-readable storage medium
according to claim 34, wherein one of the respective attributes
includes a dimension of a multidimensional database, a col-
umn of arelational database table, or a field of a record, or said
one of the respective hierarchies includes a predefined hier-
archy or an implicit hierarchy.

48. A non-transitory computer-readable storing medium
storing sequences of instructions for searching for an item
using an index for a body of data defined by a plurality of
attributes, said attributes characterized by respective hierar-
chies, said sequences of instructions when executed by one or
more processors cause:

comparing a value of the item in a first attribute with a first

attribute lower bound value associated with a first node
of'the index, the first attribute lower bound representing
a lower point in a hierarchy having the value at which
aggregation occurs, which is indicated by a plurality of
matching rows with identical attribute or dimension val-
ues; and

when the value of the item in the first attribute is lower in

the hierarchy of the first attribute than the first attribute
lower bound value associated with the first node of the
index, performing:

determining whether a child value of the first attribute

lower bound value associated with the first node of the
index is included in a path from the value of the item in
the first attribute to the first attribute lower bound value
associated with the first node of the index based on the
hierarchy of the first attribute, and

when the child value is included in the path, comparing the

value of the item in the first attribute with a first attribute
lower bound value associated with a second node of the
index, based on an indicator of a coverage class associ-
ated with the child value included in the first node of the
index.

49. The non-transitory computer-readable storage medium
according to claim 48, wherein the sequences of instructions
include instructions, that when executed by one or more pro-
cessors, cause:

if the value of the item in the first attribute is at least as high

in the hierarchy of the first attribute as the first attribute
lower bound value associated with the second node of
the index, performing:

comparing the value of the item in a second attribute with

a second attribute lower bound value associated with the
second node of the index.

50. The non-transitory computer-readable storage medium
according to claim 49, wherein the sequences of instructions
include instructions, that when executed by one or more pro-
cessors, cause an ordering of'the first attribute and the second
attribute to be determined as a reversal of an ordering of the
respective hierarchies utilized in generating the index.

51. The non-transitory computer-readable storage medium
according to claim 49, wherein the sequences of instructions
include instructions, that when executed by one or more pro-
cessors, cause after said comparing the value of the item in the
second attribute with the second attribute lower bound value
associated with the second node of the index, when the value
of the item in the second attribute is a value other than values
included in a path in the hierarchy of the second attribute as
traversed by a drill path, returning a null value.

52. The non-transitory computer-readable storage medium
according to claim 48, wherein one of the attributes includes
a dimension of a multidimensional database, a column of a

10

15

20

30

35

40

45

50

55

60

65

30

relational database table, or a field of a record, and wherein
one of the respective hierarchies includes a predefined hier-
archy or an implicit hierarchy.

53. A non-transitory computer-readable storage medium
storing sequences of instructions for traversing a body of data
defined by a plurality of attributes, said plurality of attributes
characterized by respective hierarchies, using an index, said
sequences of instructions, which when executed by one or
more processors cause:

initializing an array on each of the plurality of attributes

based on a lower bound value of each attribute which is
associated with a child node of a plurality of nodes
included in the index, each lower bound of said lower
bounds representing a lowest point in a hierarchy having
a particular value at which aggregation occurs, which is
indicated by a plurality of matching rows with identical
attribute or dimension values, and a path from each
lower bound of said lower bounds value of the child node
to a value of a parent node

lower bound value in each of the respective hierarchies,

wherein the child node is determined by accessing a
child coverage class indicator associated with the parent
node; and

generating a cross product of rows based on the array on

each one of the plurality of attributes.

54. The non-transitory computer-readable storage medium
according to claim 53, wherein one of the plurality of
attributes includes a dimension of a multidimensional data-
base, a column of a relation database table, or a field of a
record, and wherein one of the respective hierarchies includes
a predefined hierarchy or an implicit hierarchy.

55. The non-transitory computer-readable storage medium
according to claim 53, wherein the sequences of instructions
include instructions, that when executed by one or more pro-
cessors, cause:

before initializing based on a lower bound value and a path

from each lower bound of said lower bounds value of the
child node to the value of the parent node lower bound
value, performing:

initializing an array on each one of the plurality of

attributes based on a lower bound value of each attribute
for a start node of the index.

56. The non-transitory computer-readable storage medium
according to claim 53, wherein the sequences of instructions
include instructions, that when executed by one or more pro-
cessors, cause drilling down based on each child coverage
class indicator associated with the child node.

57. The non-transitory computer-readable storage medium
according to claim 56 wherein the sequences of instructions
include instructions, that when executed by one or more pro-
cessors, cause drilling down to be performed in an order that
is determined as a reversal of an ordering of the respective
hierarchies utilized in generated the index.

58. The non-transitory computer-readable storage medium
according to claim 53, wherein the sequences of instructions
include instructions, that when executed by one or more pro-
cessors, cause:

receiving a set of query values associated with one of the

attributes, and wherein said generating the cross product
further comprises generating the cross product of rows
based on the array on each one of the plurality of
attributes and the set of query values.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,195,699 B2 Page 1of1
APPLICATION NO. :10/913143

DATED : November 24, 2015

INVENTOR(S) : Welton et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In The Specification

In column 2, line 66, delete “cost,” and insert -- coast, --, therefor.

In column 22, line 30, delete “Model” and insert -- Mode --, therefor.

In The Claims

In column 28, line 29, in claim 41, delete “preformed™ and insert -- performed --, therefor.

In column 30, line 30, in claim 54, delete “relation™ and insert -- relational --, therefor.

Signed and Sealed this
Twenty-seventh Day of September, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

